
9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 256

It is known that in the recent period of time, the activity

of any organization can’t be achieved without its use of
web applications implemented in various business
processes: presentation sites, electronic shops, banking
systems for Internet banking, sales records etc. Also,
multiple corporate applications or computer records, which
until recently have been used as desktop applications,
lately, through modernization, began the use of web
technologies.

Web application security is a branch of information
security, dealing in particular with the security of web sites,
applications and web services [1].

At a high level, web application security is based on
application security principles, but these principles are
specifically applied to Computer Information Systems and
Applications, accessible to users via web interfaces.

In the early 2000s, with the emergence of Web 2.0,
which has as a basic feature the user's involvement in
building and / or modifying web content (socializing
systems), increases the exchange of information through
social networks. It also increases the number of services
and businesses managed through the web. For this reason,
hackers are increasingly trying to compromise digital
resources and corporate networks.

To improve the security of web applications, an
international community called the Open Web Application
Security Project (OWASP) was set up to coordinate
worldwide efforts and reduce the risks associated with web
applications.

The Top of the most critical vulnerabilities that threaten
web applications, according to the Open Web Application
Security Project, include:
• Cross Site Scripting (XSS) - this threat allows client
scripts to be injected and executed in the victim's browser,
which can lead to hijacking user sessions, abnormal
website presentation, etc. This vulnerability is caused by
inappropriate validation of the data received from the user.
HackerOne, which offers rewards for finding bugs in
applications, mentions that XSS in 2017 still remains one
of the biggest threats in web applications.
• Injection of data and codes through SQL queries - the
malicious user can force the application to run unplanned
codes or modify the data needed for the application. SQL

injections, as part of server queries, are the most common.
According to Cenzic's report, created in 2012, XSS and
SQL injecting threatens the most common use of 37% and
16% of web apps [2].

The vulnerabilities described below have a lower share
of occurrence - from 4% to 1%.
• Malicious file execution - files are included remotely, in
order to compromise the server activity. Attacks of this
type can affect .php, .xml files, or other files containing
code that accepts files from users.
• Unreliable references to objects - the vulnerability can
occur when the programmer has placed a reference to an
internal object directly in the code: file reference, directory,
database record, URL, or a parameter of a form in the code.
Routes to web resources must not be accessible and visible
in codes. The malicious user could manipulate the object
references without having this permission.
• Data leaks and inappropriate error handling - this type of
attack is also called "phishing": illegally obtaining sensitive
data, log-ins, passwords, bank card details, etc. An attacker
can use this vulnerability to steal sensitive data or to make
more serious attacks with stolen data, leading to colossal
financial losses. Applications may also lose data about their
configuration, internal or private data. In 2012, about $ 1.5
billion was lost due to a lack of proper supervision of this
vulnerability.
• Successful authentication and session management - the
attacker could compromise passwords, keys, or
authentication elements in order to assume the identity of
other users. This vulnerability is possible when account and
session data are not properly protected.
• Unsecured storage of encrypted data - attackers use
poorly protected data for identity theft and other offenses
(bankcard frauds). This vulnerability can occur in web
applications that do not properly use data encryption
functions to protect them.
• Unreliable communications - Vulnerability comes from
leaking sensitive information due to a poor network
infrastructure. It occurs as a result of the failure of network
traffic encryption when sensitive communications are
made.

All of these vulnerabilities must be controlled while
developing web applications. Most web resource owners do

Ensurement of web application security over the
entire life cycle

Abstract — web applications have a growing role in the work of any organization today, but there is
another aspect of web application exploitation: compromising the application can lead to trust loss in the
organization, or the organization will lose some of its customers or will have multiple direct or indirect
financial losses (to recover and restore vandalized resources). For these reasons, the development of a secure
application is of considerable importance, along with the goal of developing a functional web application.

Index Terms — life cycle, security, vulnerabilities, web application.

Natalia PLEȘCA
State University of Moldova
natalia-plesca@yandex.ru

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 257

not follow the application security endorsement
recommendations at each stage of the secure software
development lifecycle, and as a result they get and exploit
web-based applications that contain vulnerabilities that
could be avoided during the first stages of the life cycle.
The presence of these vulnerabilities is a "door" for
malicious access to application data - sometimes private, or
other informational resources.

Therefore, the same company OWASP recommends
assessing application security at each stage of the life cycle.
That is, it recommends testing to be done at each stage and
not just after the implementation stage, so there is the
possibility of correcting the activity processes, allocating
additional expenses to eliminate the risks.

Testing is the process of verifying the state of a system
or applications according to a set of criteria. OWASP
proposes the set of actions to be taken in the fabrication
process - it can be considered a testing methodology [3, 4].

Step 1. Before starting developing
1.1. Defining the lifecycle - an appropriate lifecycle

should be defined before the application development
begins, in which security assurance is inevitable at every
stage.

1.2. Reviewing policies and standards - the need to
ensure that policies, standards and documentation are in
place to be followed in the development process.
Documentation is extremely important because it provides
guidelines and polices to teams.

"People can only do the right thing if they know what the
right thing is."

If the application has to be developed in Java, for
example, it is essential to have a secure Java coding
standard. If the requirement to encrypt data is formulated, it
is essential to have an encryption standard. No policy or
standard can cover all the situations faced by the
development team. By documenting common and
predictable issues, there will be fewer situations where the
team will have to make decisions during the development
process.

1.3. Developing metrics to ensure traceability - planning
of the measurement program is required before
development starts. By defining the measurement criteria,
the visibility of defects will be ensured both in the
processes and in the developed product. It is essential to
define metrics before you start developing, as it may be
necessary to modify the data collection process.

Step 2. Specifying the requirements and designing the
solution

2.1. Reviewing Security Requirements - Security
requirements define how an application works from a
secure perspective. It is essential that security requirements
be tested. Testing in this case means testing assumptions
made in requirements and tests to see if there are gaps in
defining requirements. For example, if there is a security
requirement that users have to be registered before they can
access the website management section, it would mean that
the user must pre-emptively register or need only to
authenticate? It would be good if the requirements were
clearly formulated and there were no more interpretations
of them.

When looking for gaps in the formulation of
requirements, it would be advisable to provide security
mechanisms such as:

• User management
• User Authentication
• User authorization
• Data privacy
• Data integrity
• Session management
• Data security
• Methods of separation of subsystems
• Legislation and compliance of standards (including

privacy, etc.)
2.2. Architecture Designing - applications must have

well-documented architecture design. This documentation
may include models, textual documents and other similar
artifacts. It is essential that these artifacts be tested to
ensure that the design of the architecture imposes the
appropriate level of security as defined in the requirements.
Identifying security flows in the design phase is not just
one of the most cost-effective moments to identify defects,
but can be one of the most effective moments to make the
necessary changes. For example, if the project asks for
authorization of the actions in several places, it may be
appropriate to examine a central authorization component.
If the application performs data validation in multiple
locations, it might be appropriate to develop a centralized
validation module (for example, implementing data entry
validation in one place rather than in a dozen places is
much cheaper). If vulnerabilities are discovered, they
should be passed to the system design architect for
alternative solutions.

2.3. Creating and Analyzing UML Models - after
architectural design, UML (Unified Modeling Language)
models that describe how the application works. In some
cases, they may already be available. These models must
be used for designers to accurately confirm how the
application works. If deficiencies are discovered, they
should be presented to the system designer for the
development of alternative solutions.

2.4. Creating and examining models for threats to the
application - with architectural design solutions, UML
models - that explain exactly how the system works, it is
recommended to develop a risk model that threatens the
application. Realistic scenarios for avoiding threats need to
be developed. Design and architecture models should be
considered to ensure that these threats have been mitigated,
accepted by the business or assigned to a third party, such
as an insurance firm. When identified threats do not have
mitigation strategies, design and architecture models must
be reviewed with the system architect to modify the
patterns.

Step 3. Creation of application
Theoretically, the realization is the implementation of

some design models. However, in the real world, many
decisions about design patterns are made during the code
execution. These are often smaller decisions, either too
detailed to be described in the design stage, or problems in
which no standard has been used. If design and architecture
models are not appropriate, the developer will have to

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 258

make many decisions independently. If there are
insufficient policies and standards, the developer will be
faced with the situation to make even more decisions.

3.1. Passing the code - the security team should upgrade
the code, running it with developers, and in some cases
with system architects. A code scroll is a high-level scroll
through which developers explain the logic and flow of the
implemented code. This allows the code review team to
gain a general understanding of the code and allows
developers to explain why certain things have been
developed so and not otherwise. The goal is not to revise
the code, but to understand the flow, layout and structure of
the code that make up the application at a high level.

3.2. Revision of the code - after understanding the
structure of the code and why certain things have been
coded as they were, the tester can examine the current code
for detecting security flaws. Static checks validate the code
against a set of checklists, including:

• Requirements regarding availability, confidentiality and
integrity;

• OWASP or Top 10 for technical exposures (depending
on the depth of the review);

• Specific issues related to the language or framework
used, such as the "Scarlet Study" for PHP checklists or
"Microsoft Secure Coding" for ASP.NET;

• Any requirements specific to the software industry,
such as Sarbanes-Oxley 404, COPPA, ISO / IEC 27002,
APRA, HIPAA, Visa Merchant etc.

Regarding the return on investment (most being the time
resources), white-box testing yields much higher returns
than any other method of security review and is least reliant
on the tester's skills. However, this test method is not ideal
and the code should be tested in terms of security using
other more complete testing methods.

Step 4. The implementation of the application
4.1. Testing for application penetration - after testing

requirements, modeling, and reviewing the code, one could
assume that all the problems have been captured. Testing
the application after it has been installed provides a final
check for the certainty that the application is fully
functional.

4.2. Configuration management testing - the application
penetration test should include checking how the
application was deployed and secured. While the
application can be secured, the configuration may still be
vulnerable to exploitation.

Step 5. Maintenance
5.1. Elaboration of operational management reviews - a

process detailing the way both the operational part of the
application and the infrastructure are managed.

5.2. Making periodic robustness checks of the
application - monthly or quarterly checks should be done
on both the application and the infrastructure to ensure that
no new security risks are introduced and that the security
level is still intact.

5.3. Ensuring Change Verification - After every change
has been approved and tested, ensuring quality, it is
essential that the change is verified to ensure that the
security level has not been affected by the change.

In conclusion, it can be argued that web application
security activities in the development of web applications
should be distributed throughout its life cycle, taking into
account OWASP recommendations and other international
and national recommendations and standards. This will
provide functional and secure web applications.

REFERENCES
[1] https://en.wikipedia.org/wiki/Web_application_securit

y, last access 25.08.17
[2] "2012 Trends Report: Application Security Risks".

Cenzic, Inc. 11 March 2012. Retrieved 9 July 2012,
last access 12.09.17

[3] https://www.owasp.org/index.php/The_OWASP_Testi
ng_Framework#A_Typical_SDLC_Testing_Workflow
last access 12.09.17

[4] https://www.owasp.org/index.php/Category:OWASP_
Application_Security_Metrics_Project, last access
12.09.17

https://en.wikipedia.org/wiki/Web_application_security
https://en.wikipedia.org/wiki/Web_application_security
https://info.cenzic.com/Trend-Report-Application-Security.html
https://www.owasp.org/index.php/The_OWASP_Testing_Framework#A_Typical_SDLC_Testing_Workflow
https://www.owasp.org/index.php/The_OWASP_Testing_Framework#A_Typical_SDLC_Testing_Workflow
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Metrics_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Metrics_Project

