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I. INTRODUCTION 
Two-atom quantum systems are one of the most trivial 

models for the study of collective effects and have an 
important role in the theoretical and experimental research 
of quantum optical effects such as quantum interferences, 
atomic entanglement and superradiance. Quantum 
interferences had been observed for two photodissocciated 
atoms of a Ca2 molecule where a single photon is shared 
among the atoms [1].  A two-atom-cavity interferometer 
was first built in analogy with the Young’s interferometer, 
where each trapped atom acts as slit and the interference 
occurs due to indistinguishable pathways of the atoms-field 
interaction [2]. Depending on the superposition of the 
pathways, this type of interferences shows cavity-induced 
saturation of the resonance fluorescence spectra or photon 
bunching effect [3]. One of the basic model of quantum 
atomic entanglement effects is the two-atom system either 
placed in a cavity [4] or interacting with the surrounding 
vacuum field [5]. The observation of the Rydberg blockade 
regime between two neutral atoms was reported in [6, 7], 
which is a crucial prerequisite towards the creation and 
control of atomic entanglement. The dipole-dipole 
interaction may also be manipulated when the 
environmental vacuum field is considered in the case of 
two three-level Λ-type atoms, where the surrounding 
reservoir induces the coupling of orthogonal transitions. 
Therefore, the spatial orientation of these atoms determines 
the steady-state dynamics of the system [8]. The coherent 
trapping effect is influenced as well by the dipole-dipole 
interaction of the two two-level atoms trapped in a cavity 
[9].  

Two-atom systems may be considered as the edge for 
collective effects. Dicke collective behaviour [10] of 
superradiance and subradiance was first observed in the 
spontaneous emission variation for two trapped Ba138

+ ions 
[11]. Non-decaying atomic collective states were predicted 
for two-atom systems prepared in a subradiant state [12]. 
Meanwhile, significant results have been achieved for 
collective effects in condensed matter physics [13]. 
Particularly, superradiance was observed in a collection of 

artificial atoms as quantum dots [14]. Moreover, phonon 
superradiance effects were predicted for molecular 
nanomagnets [15] and nanomechanical resonators as 
vibrating membranes [16], while subradiance with phonons 
was reported for a system using coupled quantum dots, in 
analogy with the subradiant photon effect for a two-ion 
system [17].  

In this paper, one investigates the model of two identical 
two-level quantum dots embedded on a quantum 
mechanical resonator, such as a vibrating membrane [18] 
or a nanobeam [19]. The artificial atoms interact with the 
surrounding electromagnetic field, as well as with the 
nanoresonator’s single-mode phonon field. The aim of this 
study is to explain the mechanics of the phonon field 
behaviour within the superradiant regime. This regime is 
reached when the emitters are spaced closer to each other 
comparing to their transition wavelength. Therefore, this 
two-emitter system allows an analytical treatment for the 
inside dynamics of the collective interaction within the 
superradiant regime and shows a significant enhancement 
of the phonon signal of the quantum mechanical resonator. 

This article is structured as follows. In section II, the 
analytic model is described and the equation of motion of 
interest are solved. In section III, one discusses the 
behaviour of the mechanical resonator mean phonon 
number and its relation to the collective population 
dynamics. One compares the investigated model with the 
single quantum dot case. The summary is given in section 
IV. 

II. THE MODEL 
The model consists of two identical initially excited two-

level quantum dots (QDs) embedded on a nanomechanical 
resonator as a nanobeam, a membrane or a multilayered 
acoustical cavity. The QDs are described by their transition 
frequency 𝜔𝑞𝑑 among the excited state |𝑒⟩𝑖 and the ground 
state |𝑔⟩𝑖  where 𝑖 = {1,2} is the QD index. The QDs may 
spontaneously decay at a rate 𝛾 and interact equally with 
the quantum mechanical resonator with a coupling constant 
𝜂. The nanomechanical resonator is described in the good 
cavity limit by a single-mode phonon field of frequency 𝜔 
and the bosonic operators of annihilation and creation, 
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respectively, 𝑏 and 𝑏†. The thermal environment damps the 
mechanical resonator with a rate 𝜅 and is described as a 
thermal reservoir with a mean phonon number �̅� =
(exp (ℏ𝜔/𝑘𝐵𝑇) − 1)−1, where 𝑘𝐵 is the Boltzmann 
constant and 𝑇 is the ambient temperature. The system 
Hamiltonian is defined as follows: 

 
𝐻 =  ℏ𝜔𝑞𝑑𝑆𝑧 + ℏ𝜔𝑏†𝑏 + ℏ𝜂𝑆22(𝑏† + 𝑏) ,  (1) 

 
where the first two terms describe the free QDs and the free 
nanoresonator Hamiltonians and the last term defines the 
phonon-QDs interaction. The collective atomic operators 
are given as: 𝑆𝑧 =  ∑ (|𝑒⟩𝑖𝑖⟨𝑒| − |𝑔⟩𝑖𝑖⟨𝑔|)/22

𝑖=1 = 𝑆22 − 1, 
𝑆+ = ∑ |𝑒⟩𝑖𝑖⟨𝑔|2

𝑖=1  and 𝑆− = ∑ |𝑔⟩𝑖𝑖⟨𝑒|2
𝑖=1 , and obey the 

standard SU(2) commutation relations: [𝑆+, 𝑆−] = 2𝑆𝑧 and 
[𝑆𝑧 , 𝑆±] = ±𝑆±.  

The system dynamics is defined via the master equation 
of the density matrix operator, expressed as: 
 

�̇� = −
𝑖

ℏ
[𝐻, 𝜌] + 𝜅�̅�ℒ(𝑏†) + 𝜅(1 + �̅�)ℒ(𝑏) + 𝛾ℒ(𝑆−) , 

(2) 
 

where the Liouville superoperator ℒ for a given operator 𝑜 
is defined as ℒ(𝑜) = 2𝑜𝜌𝑜† − 𝑜†𝑜𝜌 − 𝜌𝑜†𝑜. The first term 
of the master equation is the coherent term defined by the 
system Hamiltonian, the next two terms represent the 
pumping and damping of the mechanical resonator by the 
thermal reservoir, while the last term describes the 
spontaneous emission of the separate QDs as well as their 
interaction through the surrounding vacuum field within 
the superradiant condition. This condition is satisfied when 
the QDs are spaced closer to each other than their transition 
wavelength. The master equation is solved via the system 
of equations of motion for the parameters of interest, i.e., 
the resonator mean phonon number 〈𝑏†𝑏〉 and the QDs 
collective population 〈𝑆𝑧〉. The corresponding system of 
linear coupled differential equations of motion is defined 
as: 

 
𝜕〈𝑆𝑧〉

𝜕𝑡
= −2𝛾〈𝑆+𝑆−〉,  

𝜕〈𝑆+𝑆−〉

𝜕𝑡
= 8 𝛾{1 + 〈𝑆𝑧〉 − 〈𝑆+𝑆−〉}, 

𝜕〈𝑏†𝑏〉

𝜕𝑡
= 𝑖𝜂{〈𝑆𝑧𝑏〉 − 〈𝑆𝑧𝑏†〉 + 〈𝑏〉 − 〈𝑏†〉} 

                   −2𝜅〈𝑏†𝑏〉 + 2𝜅�̅� , 
𝜕〈𝑆𝑧𝑏〉

𝜕𝑡
= −(𝜅 + 𝑖𝜔)〈𝑆𝑧𝑏〉 − 2𝛾〈𝑆+𝑆−𝑏〉 

                   −𝑖𝜂{2 + 2〈𝑆𝑧〉 − 〈𝑆+𝑆−〉} , 
𝜕〈𝑆+𝑆−𝑏〉

𝜕𝑡
= −(𝜅 + 8𝛾 + 𝑖𝜔)〈𝑆+𝑆−𝑏〉 − 2𝑖𝜂{1 + 〈𝑆𝑧〉}

+ 8𝛾{〈𝑆𝑧𝑏〉 + 〈𝑏〉} , 
𝜕〈𝑏〉

𝜕𝑡
= −(𝜅 + 𝑖𝜔)〈𝑏〉 − 𝑖𝜂{1 + 〈𝑆𝑧〉}                          

(3) 
 

together with the Hermitian conjugates of these equation. 
The dynamics of the equations of motion may be solved 

analytically considering the initial conditions of its 
variables: 〈𝑏†𝑏〉𝑡=0 = �̅� , 〈𝑆𝑧〉𝑡=0 = 1 and all the other 
variables value zero at 𝑡 = 0. The system may be prepared 
in such an initial state by exciting the QDs with a short 
pulse laser of duration 𝜏 ≪ 1/𝜂 in order to not affect the 
phonon-QDs dynamics. One finds the following expression 
of the nanomechanical resonator mean phonon number: 

 
      〈𝑏†𝑏〉 = �̅� + �̅�𝑒−2𝜅𝑡 − �̅�(𝑡)𝑒−4𝛾𝑡 

−𝑐̅𝑒−(4 𝛾+𝜅)𝑡[�̅�(𝑡) cos(𝜔𝑡) + �̅�(𝑡) sin(𝜔𝑡)] ,   (4) 
 
where the coefficients of the expression (4) are defined as:  
 
�̅� = 2𝜂2(448𝛾4 − 496𝛾3𝜅 + 2𝜅2(𝜅2 + 𝜔2) +              

4𝛾2(49𝜅2 + 3 𝜔2) − 3𝛾(11𝜅3 + 3𝜅𝜔2))/(𝛼 𝜁), 
 

�̅�(𝑡) =  2𝜂2(−2𝜅2(𝜅2 + 𝜔2) + 𝛾𝜅(3𝜅2 + 7𝜔2 − 2𝜅3𝑡 − 
2𝜅𝜔2𝑡) + 4𝛾2(𝜅2 − 𝜔2 + 𝜅3𝑡 + 𝜅 𝜔2𝑡))/(𝛼𝛽), 

 
𝑐̅ = 8𝜂2/(𝛽𝜁), 

 
�̅�(𝑡) = (−16𝛾2(4𝛾2𝜅2 + 3𝛾𝜅3 − 4𝛾2𝜔2 + 7𝛾𝜅𝜔2 +      

𝜅2𝜔2 + 𝜔4 + 4𝛾(2𝛾𝜅 + 𝜔2)(𝜅2 + 𝜔2)𝑡) + 𝛽(52𝛾2 −
13𝛾𝜅 + 𝜅2 + 𝜔2 + 2𝛾(48𝛾2 − 12𝛾𝜅 + 𝜅2 + 𝜔2)𝑡)), 

 
�̅�(𝑡) = 𝛾𝜔( 𝛽 + 16𝛾(8𝛾2𝜅 − 𝜅(𝜅2 + 𝜔2) +              
            𝛾(𝜅2 + 5𝜔2)) + 8𝛾(𝛽 + 8𝛾(2𝛾 − 𝜅)(𝜅2 + 𝜔2))𝑡) 

 
while 𝜁 = ((κ − 4γ)2 + ω2)2, 𝛼 = (κ − 2𝛾)2 and 
𝛽 = (κ2 + ω2)2.  

The expression of the collective population of the two-
QD system is deduced as: 

 
〈𝑆𝑧〉 = 𝑒−4𝛾𝑡(4𝛾𝑡 + 2) − 1 .          (5) 

 
 

 
Figure 1: The mean phonon number of the nanomechanical 
resonator  〈𝑏†𝑏〉 for a two-QD system (continuous line) and 
for a single-QD system (dashed line) as functions of time t. 

The other system parameters are 𝜅/𝛾 = 0.8, 𝜂/𝛾 = 8, 



9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017 
 

         39 

𝜔/𝛾 = 10 and �̅� = 5. 

III. RESULTS AND DISCUSSIONS 
The dynamics of the quantum mechanical resonator 

mean phonon number and the collective QD population are 
represented in figures 1 and 2, respectively. The behaviour 
of the system is compared to the single-QD case that we 
had treated in [16]. One observes that the phonon signal is 
significaly enhanced and experiences a stronger damping 
effect comparing to single-QD case, while the collective 
population decays faster.  

 In order to highlight the exponential behaviour of the 
collective population decay of figure 2, it was given in 
logarithmic scale as an expression of the normalized 
excited state population that satisfies the relation 〈𝑆𝑧〉/𝑁 =
〈𝑆22〉/𝑁 − 1/2. The asymptotical behaviour for longer 
time durations is exponential and the two-atom case has a 
twice faster decay. This is a characteristic feature of 
superradiant dynamics that becomes N times faster, where 
N is the number of collectively interacting emitters. 

The superradiant feature of faster dynamics of the QD 
collective decay is transferred to the behaviour of the 
quantum mechanical resonator. This effect was reported for 
larger QD samples in [16], however the analytic expression 
of the two-QD case allows a better understanding for the 
mechanics of this effect. Namely, the general form of the 
expression of 〈𝑏†𝑏〉 of equation (4) is similar to the single-
QD case, with a single main difference – a twice faster 
spontaneous emission. Therefore, the two-QD analytic case 
resembles to the case of a single QD with a twice bigger 
spontaneous emission rate that couples twice stronger to 
the nanomechanical resonator. Although this is a usual 
description of superradiant mechanics, the coefficients of 
the equation (4) are different than the ones of the single-
QD case. Moreover, some of them became time dependent 
for the two-QD case, so that no complete analogy can be 
made with the single-QD case.  

Hence, superradiant features are found within the general 
behaviour of the two-QD system and are expressed through 
a twice faster dynamics of the QD decay. This features are 
completely transferred to the mechanical resonator and its 
coupling to the two QDs resembles to a stronger coupling 
to a faster single QD. However, the system admits some 
particularities that are specific only to the dynamics of the 
two-level atom system and cannot equate with the single-
QD case. 

 

IV. SUMMARY 
The quantum dynamics of a nanomechanical resonator 
coupled to a two-quantum dot collectively decaying system 
had been investigated. This system allows an analytic 
treatment of the dynamics of the quantum mechanical 
resonator and shows superradiant features due to the QD 
collective behaviour. A strong resemblance with the 
dynamics of a single-QD system was identified, leading to 
a deeper understanding of the mechanics of the phonon 
superradiance effect. An enhanced phonon emission have 
been observed. 

 
Figure 2: The normalized atomic excited populations 

〈𝑆22〉/𝑁 of the two-QD system (continuous line) and of the 
single-QD system (dashed line), in logarithmic scale, as 

functions of time t. The other system parameters are 
 𝜅/𝛾 = 0.8, 𝜂/𝛾 = 8, 𝜔/𝛾 = 10 and �̅� = 5. 
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