

Open Access

Enhancement of the critical current density in FeO-coated MgB₂ thin films at high magnetic fields

Andrei E. Surdu¹, Hussein H. Hamdeh², Imad A. Al-Omari³, David J. Sellmyer⁴, Alexei V. Socrovisciuc¹, Andrei A. Prepelita¹, Ezgi T. Koparan^{1,5}, Ekrem Yanmaz⁵, Valery V. Ryazanov⁶, Horst Hahn⁷ and Anatolie S. Sidorenko^{*1,7}

Beilstein J. Nanotechnol. 2011, 2, 809-813.

© 2011 Surdu et al: licensee Beilstein-Institut.

License and terms: see end of document.

doi:10.3762/bjnano.2.89

Received: 05 September 2011

Accepted: 18 November 2011

Published: 14 December 2011

Associate Editor: P. Ziemann

Letter

Address:

¹Institute of Electronic Engineering and Nanotechnologies "D.Ghitu" ASM, MD2028, Chisinau, Moldova, ²Department of Physics, Wichita State University, Wichita, Kansas 67260, USA, ³Department of Physics, P.O. Box 36, Sultan Qaboos University, PC 123 Muscat, Sultanate of Oman, ⁴Department of Physics and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA, ⁵Karadeniz Technical University, Physics Department, 61080, Trabzon, Turkey, ⁶Institute for Solid State Physics, Russian Academy of Sciences, 132432 Chernogolovka, Russia and ⁷Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany

Email:

Anatolie S. Sidorenko* - anatoli.sidorenko@kit.edu

* Corresponding author

Keywords:

critical current; magnesium diboride; nanoparticles; pinning; superconductivity

Abstract

The effect of depositing FeO nanoparticles with a diameter of 10 nm onto the surface of MgB₂ thin films on the critical current density was studied in comparison with the case of uncoated MgB₂ thin films. We calculated the superconducting critical current densities (J_c) from the magnetization hysteresis (M-H) curves for both sets of samples and found that the J_c value of FeO-coated films is higher at all fields and temperatures than the J_c value for uncoated films, and that it decreases to ~10⁵ A/cm² at B = 1 T and T = 20 K and remains approximately constant at higher fields up to 7 T.

Introduction

After the discovery of superconductivity in MgB₂ [1], this material became attractive for researchers all over the world not only because of its special physical properties but also due to its possible technical applications. This material, with a hexagonal crystal structure and a critical temperature of $T_c = 39$ K, raised a

lot of questions about its transport properties. This strong type-II superconductor has a fairly high critical current density in zero magnetic field, i.e., up to $J_c \sim 1.6 \times 10^7 \text{ A/cm}^2$ at 15 K [2]. This superconducting parameter makes it a very attractive candidate to replace Nb in various superconducting devices,