Europhys. Lett., **59** (2), pp. 272–276 (2002)

Evidence for two-dimensional nucleation of superconductivity in MgB_2

A. S. SIDORENKO^{1,2}, L. R. TAGIROV^{1,3}, A. N. ROSSOLENKO⁴, V. V. RYAZANOV⁴, M. KLEMM¹ and R. TIDECKS¹

¹ Institut für Physik, Universität Augsburg
86159 Augsburg, Germany
² Institute of Applied Physics - 2028 Kishinev, Moldova
³ Kazan State University - 420008 Kazan, Russia
⁴ Institute of Solid State Physics - 142432 Chernogolovka, Russia

(received 3 December 2001; accepted in final form 23 April 2002)

PACS. 74.62.Bf – Effects of material synthesis, crystal structure, and chemical composition. PACS. 74.70.Ad – Metals; alloys and binary compounds (including A15, Laves phases, etc.). PACS. 74.76.-w – Superconducting films.

Abstract. – According to the crystal structure of MgB₂ and band structure calculations quasi-two-dimensional (2D) boron planes are responsible for the superconductivity. We report on critical fields and resistance measurements of 30 nm thick MgB₂ films grown on MgO single crystalline substrate. A linear temperature dependence of the parallel and perpendicular upper critical fields indicates a 3D-like penetration of magnetic field into the sample. Resistivity measurements, in contrast, yield a temperature dependence of fluctuation conductivity above T_c which agrees with the Aslamazov-Larkin theory of fluctuations in 2D superconductors. We consider this finding as an experimental evidence of two-dimensional nucleation of superconductivity in MgB₂.

Introduction. – Recent discovery [1] of a medium-temperature superconductivity in magnesium diboride (MgB₂) raised questions about the origin and properties of superconductivity in this compound. MgB₂ has a hexagonal crystal structure with boron layers interleaved by magnesium layers. Due to this layered structure, normal-state electric transport, as well as superconducting properties should be highly anisotropic. Band structure calculations [2, 3] indicate that electrons at the Fermi level are predominantly derived from boron atoms. MgB₂ may be regarded as sheets of metallic boron with strong covalent intralayer bonding, separated by Mg layers with ionic interlayer B-Mg bonding. The strong B-B bonding induces enhanced electron-phonon interaction, so that the superconductivity in MgB₂ is mainly due to the charge carriers in the boron planes.

Experimental investigations on single crystals and c-oriented epitaxial and textured films (see, e.g., the review [4] and references therein) give evidence for a highly anisotropic superconducting gap. Measured critical magnetic fields usually show a pronounced anisotropy for c-oriented films and single crystals [4]. Applying the anisotropic Ginzburg-Landau model to