Double-dimensional crossover in layered superconductor

A S SIDORENKO, V I DEDIU and A G SANDLER

Institute of Applied Physics, Kishinev 277028, USSR

Abstract. The critical magnetic fields H_{c2} of superconducting layered structures V/Cu were investigated. The double-dimensional crossover 3D-2D-3D was observed on the temperature $(H'_{c2}(\theta))$ dependences of critical magnetic fields. The field crossover 3D-2D is caused by strong temperature dependence of superconducting coherence length ξ_s near T_{c} . The second crossover 2D-3D is provided by temperature dependence of normal metal coherence length ξ_N and reflects the 3D isotropization of layered structure V/Cu at low temperature.

1. Introduction

Dimensional crossover from three-dimensional (3D) to two-dimensional (2D) behaviour in S/N layered structures has been the subject of great interest during the last few years (Beasley 1980). The superconductivity in such structures is localized in S-layers (2D) at low temperatures, but the sharp increase of superconducting coherence length at $T \rightarrow T_c$ leads to appearance of large superconducting domain, which overlaps many layers (3D). Dimensional crossover should be observable in the temperature dependence of parallel critical magnetic field $H_{c2}^{"}(T)$ and angular dependences $H_{c2}(\theta)$ at different temperatures. $H_{c2}(T)$ changes from square-root law $(H_{c2} \sim (T_c - T)^{1/2})$ to linear law $(H_{c2} \sim (T_c - T))$ as $T \rightarrow T_c$, while angular dependence $H_{c2}(\theta)$ changes from "cusp"-like (2D) to "soft" like (3D) behaviour, when temperature rises. However the low-temperature properties $(T \ll T_c)$ of such structures have not been investigated properly.

2. Experiment

The temperature and angular dependences of upper critical field were investigated for magnetron-sputtered multilayers V/Cu with different thicknesses of vanadium and copper layers: $d_{\rm V} = 25$ nm, $d_{\rm Cu} = 10-20$ nm, and the number of layers $N_{\rm V} = 10$, $N_{\rm Cu} = 11$. The sample rotation inside the superconducting magnet was operated with accuracy of 0.1°, and the temperature was measured by a calibrated Ge-thermometer.

3. Results and discussion

Figure 1 shows the angular dependences $H_{c2}(\theta)$ for V/Cu (25 nm/10 nm) at different temperatures, where $\theta = 0^{\circ}$ corresponds to parallel field. The transition of behaviour from "soft"-like (figure 1A) to "cusp"-like (figure 1B) near the $\theta = 0^{\circ}$ orientation corresponds to 3D \rightarrow 2D-dimensional transition mentioned above. At lower temperatures the "cusp"-like form of the dependence is maintained (figure 1C).