25th International Conference on Low Temperature Physics (LT25)

Journal of Physics: Conference Series 150 (2009) 052242

Double re-entrance of superconductivity in superconductor/ferromagnet bilayers

A S Sidorenko¹, V Zdravkov¹, J Kehrle², R Morari¹, G Obermeier², S Gsell², M Schreck², C Müller², V Ryazanov³, S Horn², L R Tagirov⁴, and R Tidecks²

¹Institute of Electronic Engineering and Industrial Technologies ASM, Kishinev, MD2028, Moldova

²Institut für Physik, Universität Augsburg, D-86159 Augsburg, Germany

 3 Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, 142432, Russia 4 Solid State Physics Department, Kazan State University, Kazan, 420008, Russia

E-mail: Anatoli.Sidorenko@int.fzk.de

Abstract. We report on the first observation of a double suppression of superconductivity in a superconductor/ferromagnet layered system. The result was obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu₄₁Ni₅₉ with $d_{Nb} \simeq 6.2$ nm. As the thickness of the ferromagnetic alloy gradually increases, the superconducting transition temperature T_c drops sharply until a complete suppression of superconductivity is observed at $d_{CuNi} \simeq 2.5$ nm. At further increase of the Cu₄₁Ni₅₉ layer thickness, superconductivity restores at $d_{CuNi} \simeq 24$ nm. Then, with a subsequent increase of d_{CuNi} , superconductivity vanishes again at $d_{CuNi} \simeq 38$ nm. Our experiments give evidence for the realization of the quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic alloy layer.

1. Introduction

In superconductor-ferromagnet metal (S/F) contacts the superconducting pairing wave function not only exponentially decays into the F metal, as in the superconductor/normal metal (S/N) proximity effect, but simultaneously oscillates [1]. A variety of novel physical effects caused by these oscillations were predicted ([1] and references therein). Some of them have already been observed experimentally: non-monotonous and reentrant behavior of the superconducting critical temperature T_c as a function of the F metal layer thickness, Josephson junctions with intrinsic π -phase shift across the junction, inverted differential current-voltage characteristics. In this work we report on results of superconducting proximity effect experiments on Nb/Cu_{1-x}Ni_x x = 0.59 bilayers. After a destruction by interference effects of the superconducting pairing wave function and a subsequent recovery, a second suppression of superconductivity is found, giving an impressive experimental evidence for a quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [2, 3] like state in the ferromagnetic layer.

The origin of FFLO state physics lies in the exchange splitting of the conduction band in a ferromagnetic metal. One of the singlet Cooper-pair electrons occupies the majority subband, for example spin-up, while the other one resides at the spin-down, minority subband. Although the pairing occurs with opposite directions of the wave number vectors of the electrons, their