arXiv:1806.04978v1 [cond-mat.str-el] 13 Jun 2018

Determining the local low-energy excitations in the Kondo semimetal $CeRu_4Sn_6$ using resonant inelastic x-ray scattering

Andrea Amorese,^{1,2} Kurt Kummer,³ Nicholas B. Brookes,³ Oliver Stockert,² Devashibhai T. Adroja,⁴

André M. Strydom,⁵ Andrey Sidorenko,⁶ Hannes Winkler,⁶ Diego A. Zocco,⁶ Andrey Prokofiev,⁶

Silke Paschen,⁶ Maurits W. Haverkort,⁷ Liu Hao Tjeng,² and Andrea Severing^{1, 2}

¹Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany

²Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany

³European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220, F-38043 Grenoble Cedex 9, France

⁴ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX, United Kingdom

⁵Highly Correlated Matter Research Group, Physics Department,

University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

⁶Institute of Solid State Physics, Vienna University of Technology,

Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

⁷Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany

(Dated: June 14, 2018)

We have investigated the local low-energy excitations in CeRu₄Sn₆, a material discussed recently in the framework of strongly correlated Weyl semimetals, by means of Ce M_5 resonant inelastic x-ray scattering (RIXS). The availability of both ${}^2F_{\frac{5}{2}}$ and ${}^2F_{\frac{7}{2}}$ excitations of the Ce $4f^1$ configuration in the spectra allows for the determination of the crystal-electric field parameters that explain quantitatively the temperature dependence and anisotropy of the magnetic susceptibility. The absence of an azimuthal dependence in the spectra indicates that all crystal-electric field states are close to being rotational symmetric. We show further that the non-negligible impact of the \check{A}_6^0 parameter on the ground state of CeRu₄Sn₆ leads to a reduction of the magnetic moment due to multiplet intermixing. The RIXS results are consistent with inelastic neutron scattering (INS) data and are compared to the predictions from *ab-initio* based electronic structure calculations.

In several Ce compounds the localized 4f electrons hybridize with the conduction electrons (cf-hybridization) so that hybridization gaps can form and give rise to Kondo insulating, semiconducting or semimetallic ground states.¹ These materials are presently the focus of interest due to the proposal that the combination of strong spin-orbit coupling, bands of opposite parity (4f and 5d), plus the hybridization induced gap should give rise to strongly correlated nontrivial topological phases.²⁻⁶ CeRu₄Sn₆ is a tetragonal, non-centrosymmetric $(I\bar{4}2m)^7$ compound. Its electrical resistivity increases as temperature decreases which has been attributed to the opening of a hybridization gap of the order of 100 K.^{8–12} The absence of magnetic order down to 50 mK^{13} and the non-integer valence of $3.08^{14,15}$ confirm the importance of strong cfhybridization. Recently, band structure calculations in the LDA+Gutzwiller scheme have suggested that CeRu₄Sn₆ is a correlated Weyl semimetal,¹⁶ a conjecture that remains to be tested experimentally, especially since the non-centrosymmetric crystal structure complicates the prediction for gap openings after a band inversion.

To understand the properties of CeRu₄Sn₆ and to assess the reliability of the theoretical predictions we need to know not only the ground state but also the low-energy excitations of this system. The linear dichroism (LD) in soft x-ray absorption (XAS) and the direction dependence in non-resonant inelastic scattering (NIXS) have shown that the crystal-electric field (CEF) ground state symmetry must be the Γ_6^{14} in agreement with magnetization measurements.¹⁰ However, there is so far no information about the CEF level scheme, i.e. about the energy splittings ΔE_1 and ΔE_2 and the mixing factor α of the excited CEF states. The present resonant inelastic x-ray scattering (RIXS) study aims at giving a full description of the CEF level scheme of CeRu₄Sn₆.

In an ionic model the trivalent $(4f^1)$ configuration of Ce is split by the effect of spin-orbit interaction ($\approx 280 \text{ meV}$) in two multiplets, ${}^2\text{F}_{\frac{5}{2}}$ and ${}^2\text{F}_{\frac{7}{2}}$, with 6-fold $(J_z = \{-\frac{5}{2}; ...; +\frac{5}{2}\})$ and 8-fold degeneracy $(J_z = \{-\frac{7}{2}; ...; +\frac{7}{2}\})$. This degeneracy is further reduced by the interaction with the surrounding ions in the crystal and can be modeled with an effective CEF potential, written as a sum of (renormalized) spherical harmonics $C_k^m = \sqrt{\frac{4\pi}{2k+1}}Y_k^m$:

$$V_{CEF}(r,\theta,\Phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_k^m r^k C_k^m(\theta,\Phi)$$

The expectation values $\langle r^k \rangle$ cannot be calculated *abinitio* and are usually included in the phenomenological CEF parameters $\check{A}_k^m = A_k^m \langle r^k \rangle$ that must be determined experimentally. Five independent parameters \check{A}_2^0 , \check{A}_4^0 , $\check{A}_4^{\pm 4}$, \check{A}_6^0 and $\check{A}_6^{\pm 4}$ fully describe the CEF problem for a Ce³⁺ ion with tetragonal point symmetry as in CeRu₄Sn₆. Non-zero $\check{A}_4^{\pm 4}$ and $\check{A}_6^{\pm 4}$ mix the J_z states according to $\Delta J_z = 4$, i.e. $J_z = \pm \frac{3}{2}$ and $\pm \frac{5}{2}$, and $J_z = \pm \frac{1}{2}$ and $\pm \frac{7}{2}$, respectively. The intermixing of the two J mulitplets ${}^2F_{\frac{5}{2}}$ and ${}^2F_{\frac{7}{2}}$ is usually negligible and the impact