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Abstract – In recent decades different methods have been 

developed to analyse correlations of complex dynamic systems. 

In the field of medical tests, there is a growing interest in how 

the new information can be gained on the interactions between 

the main physiological regulating mechanisms both in healthy 

and diseased individuals. Recent advances in dynamic linear, 

nonlinear and information theory, allowed the study of 

information flows between causal and non-causal time series 

using multivariate analysis. To investigate the correlations in 

and between the main control systems, as well as for the 

quantification of the interactions between these complex systems 

a variety of linear and non-linear methods have been proposed 

up to the present time. In this paper will be presented the most 

used approaches, both linear and nonlinear, to quantify the 

direct or indirect correlations and directionality of these 

interactions (master-slave relationship). 

Keywords – dynamic systems. 

I.  INTRODUCTION 

Autonomous control systems are considered complex 

dynamic systems characterized by interactions, both linear 

and nonlinear, of component subsystems [1]. These systems 

and subsystems physiological interactions can be described 

as a closed loop feedback mechanisms (reverse reaction) and 

feed forward (forward reaction) mechanisms. There are 

important issues that must be taken into account in the 

analysis of physiological control systems time series:  

• These complex systems interact both directly and 

indirectly. It is suggested the use of multidimensional 

approach instead of two-dimensional,  

• Physiological time series (e.g., electrocardiogram, systolic 

and diastolic blood flow, pletismogram, respiratory, 

respiratory flow) are sometimes noisy, non-stationary 

and stationary short periods, 

• Evaluation of correlation and causality can be achieved by 

applying the linear or nonlinear time series. While the 

nonlinear methods favour dynamic interactions of 

complex signals, linear methods favour individual 

behaviour biological signals in the frequency domain. 

In order to investigate the relationships between these 

systems a variety of methods have been proposed. In 

capturing complex nonlinear interactions, occurring in 

physiological systems and subsystems, most approaches are 

based on the notion of Granger causality (GC) defined as 

follows: if a time series has a causal influence over another 

time series knowledge of the first past time series is useful to 

predict future values of the second time series [2]. The term 

refers to a causal relationship of cause and effect, an event 

causing another event. 

Direct correlation between two time series x1 and x2 is 

understood that the interdependence between x1↔ x2 (from a 

time series to the other), while the indirect correlation is 

produced by means of another time series, shortly there is 

direct a correlation between: x1 ↔ x2 and x3 ↔ x2 and 

indirect correlation between x1 ↔ x3, (correlation effects are 

mediated by one or more different time series). The 

definition of  correlation generalizes the concept of causal 

correlation to describe the interactions, back and forth, 

between two time series [3] (Figure 1 ab). 
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Fig. 1. - Suggestive representation of the types of direct and indirect 

correlations for (a) a bivariate case and (b) a case with multiple 

variables. (a) There is a direct correlation between x1 ↔ x2; (b) There 
are direct correlation between x1 and x2 and x2 and x3 and indirect 

correlation between x1 and x3 indirectly mediated by x2 (correlation 

direction: unidirectional represented by "→" and "←" symbols and 
bidirectional by the "↔" symbol) 

The most applied approach in literature to assess both 

direct and indirect correlations, in terms of levels or 

directions of correlation, can be grouped into five classes: 

Granger causality, Linear predictions, Entropy, 

Symbolisation and Phase synchronization. 

II.  GRANGER CAUSALITY 

Norbert Wiener introduced a clear definition of the 

concept of causality between two time series in a statistical 

framework as follows: for two time series recorded 

simultaneously, a time series can be called causal another 

time series, where the latter series can be better predicted by 

using characteristics of the former [4, 5]. Today this concept 

is known as Granger causality (GC). GC between two 
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processes X1(t) and X2(t) is defined as: X1(t) has a causal 

influence on X2(t), (X1(t) → X2(t)), where knowledge of the 

past, both of X1(t) and of X2(t) reduces the error variance of 

the prediction of X2(t compared to the situation where it is 

known only the past of X2(t) (past and present causes future, 

but not vice versa) [2, 6]. Granger causality can be assessed 

both by means of linear and nonlinear methods. Among the 

most effective linear approaches that describe GC in 

frequency domain are Partial direct coherence (PDC) [7, 8] 

and Direct transfer function (Directed Transfer Function - 

DTF) [9] methods. These methods are based on the transfer 

matrix of an autoregressive model and assume stationary 

signals in the time interval to be investigated [10]. 

III. LINEAR METHODS FOR DETECTING GRANGER CAUSALITY 

All the linear methods assess GC based on a multivariate 

autoregressive model (MVAR) parameters, and may be 

divided into methods for assessing GC in the time domain or 

methods for assessing GC in the frequency domain. 

The method for detecting causal relationships between 

several linear time series is based on linear prediction theory. 

For a stationary time series x(t), is taken into account the 

following autoregressive (AR) prediction of the current value 

of x(t) based on the latest m measurements: 

  (2.1) 

where εx (t) is the prediction error. If there is another 

stationary time series y (t), acquired simultaneously with x 

(t), then the following predictions of the values of x (t), both 

based on their previous values and based on past values of y 

(t) can be calculated according to: 

  (2.2) 

A. Granger causality evaluation in the time domain 

Geweke [11] was the first to propose a linear bivariate 

analysis of time series for Granger causality analysis, using 

the method called Linear Granger Causality (LGC) based on 

the error prediction variance of time series and associated 

with a statistical test for causality [6].   

If are considered two stochastic processes, X1 and X2, 

and LGC parameter values are normalized to the [0,1] range, 

then according to the method, if X2 process has no causal 

influence on X1 process,
2 1X XLGC  parameter value is 0, 

which means that that by knowing the past values of X2, X1 

prediction does not improve, but when 
2 1

0X XLGC     the 

existence of a causal influences can be assumed. High values 

of 
1 2X XLGC  indicate the presence of bidirectional 

correlations or feedback relationships between the two time 

series [12]. 

B. Granger causality evaluation in the frequency domain 

The most important approaches for assessing the linear 

GC in the frequency domain are Partial Directed Coherence - 

PDC) (PDC) [13, 14]  and Directed Transfer Function (DTF) 

[15]. These approaches are based on an autoregressive model 

(AR) adapted for these applications and assume stationary of 

the signals in the time interval under investigation [10] . 

a) Partial Directed Coherence ( PDC ) 

PDC method is a parametric approach based on an m-

dimensional MVAR model of order p. This method has the 

advantage of direct and indirect causal information transfer 

detection, because measures only direct effects/ influences of 

multivariate dynamic system signals. PDC method allows the 

quantification of the causal correlation level between two 

signals Xi and Xi depending on the f frequency. Values 

acquired using the PDC method were normalized between 0 

and 1 values and thus the causal correlation from Xj to Xi is 

surprised as a function of frequency f, yielding PDC 

parameter value equal to 0 when Xj does not influence Xi  

and PDC parameter value equal to 1 when all causal 

influences originating from Xj are directed towards Xi [8, 12, 

16] [17].  

b) Directed Transfer Function ( DTF )  

DTF allows the determination of direct causal influences 

between two signals in relation to all other signals of the 

analysed system by applying a MVAR model using a transfer 

matrix to describe the transfer of causal information  [9, 18]. 

By using the DFT method can be estimated both direct and 

indirect effects of a series of time to another. For this reason, 

a differentiation between direct and indirect causal 

interactions or both is not possible, leading to detect the 

presence of a greater number of interactions than are actually 

present [25].  

IV. NONLINEAR METHODS FOR DETECTING GRANGER 

CAUSALITY 

Most limiting factor in nonlinear Granger causality 

analysis is the model selection because it should be adapted 

accordingly the dynamics of investigated bio-signals. From 

this point of view there are promising approaches in the 

literature, able to quantify the causality in the case of non-

linear signals, such as methods based on the identification of 

linear and non-linear models, local and global. 

Methods based on identifying global nonlinear models 

were proposed by Faes et al. [19] 

They have introduced a new method for the detection of 

the correlation and causality between two time series based 

on nonlinear auto-regressive (NAR) models and the non-

linear auto-regressive exogenous (NARX) models. To assess 

the GC through NARX models, Faes et al. examined the 

prediction mean square error and proposed a new parameter 

to which have been assigned values of 0 and 1, value of 0 

being assigned to a completely predictable time series and the 

value of 1 to a series of completely unpredictable time series. 

Causality or influence direction between two signals x 

and y can be investigated by reversing the roles of input and 
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output of the two series and by calculating normalized 

absolute and relative Predictability improvement (PI) 

parameters. 

Another approach for GC analysis was introduced by 

Riedl et al. and is based on nonlinear additive autoregressive 

models (NAARX) with special inputs provided for bivariate 

time series [20]. 

Predictability improvement (PI) was measured by a cross-

validation criterion that takes into account all the predictors 

used. To avoid false detections or false correlations, it was 

considered the existence of actual correlations when were 

detected more than 80% of the time series elements 

investigated, and otherwise were noted as artefact [20].  

V. NONLINEAR PREDICTIONS 

Nonlinear prediction is based on the cross prediction and 

is similar to approaches based on predictability improvement 

(PI) in terms of the methodology that underlies them, but 

they differ because does not measure GC, but highlights 

another aspect (concept) of causality exploiting cross 

predictability asymmetry (CP) when used to detect 

interactions direction between the two series. 

Farmer and Sidorowich [21] were the first who introduce 

the concept of local linear prediction called K nearest 

neighbour prediction, which was later integrated into 

different approaches. Based on this concept was developed 

the local linear prediction method, sometimes called linear 

approximation method of the nearest neighbour method. 

Based on this approach, Fas et al. introduced bivariate 

linear prediction method for the identification of the causal 

interdependence between two series of time (x, y). This 

method has been associated with an approach of "cross -

validation" for short-term time series analysis [22]. Fas et al. 

studied three different approaches of nonlinear mutual 

prediction, namely: Cross Prediction, Mixed Prediction and 

Predictability improvement methods for testing the capacity 

of these methods to evaluate the correlation levels and 

directionality for bivariate time series [23].  

VI. METHODS BASED ON ENTROPY 

Entropy-based methods can also be used in the analysis of 

causality of complex system signals as follows: if are 

considered two stationary time series representing the records 

of x and y electrophysiological signals, of n and respectively 

m length, and for each time series is determined the 

probability of occurrence of each value, then to highlight the 

influence of signals on each other, may be used the 

formalism used in the discrete channel transmission analysis. 

If the two signals that are deemed to be the input and output 

of such a discrete channel and the values of signals are 

considered to represent the input and the output of channel, in 

order to highlight the influence of signals on each other, by 

using the calculated probabilities, can be determined the 

entropies of x and y signals. These entropies are: the input - 

output entropy H(X, Y), conditional entropies H (X|Y) and H 

(Y│X) and the mutual information, I(X, Y). 

A. Mutual information  

Mutual information measures the average information 

transmitted through the discrete transmission channel 

(between two discrete stationary time series, x and y). The 

estimation of mutual information between two discrete 

stationary time series, x and y, is based on the determination 

of H(X) and H(y) entropies and of joint entropy H(x, y), 

where p(xi) and p(yi) are the probability distributions of x and 

y and p (xi, yi) is the joint probability distribution of both 

series. 

B. Conditional entropy 

Conditional entropy  quantifies the level of 

correlation between two time series (x, y) and is a measure of 

the complexity of x in terms of y, the conditional entropy of x 

with respect to y. 

C. Transfer entropy  

Schreiber [24] proposed a theoretical approach based on 

information, called transfer entropy (TE), able to distinguish 

between two processes that send and receive information, to 

detect asymmetries of interaction and to capture the extent to 

which the influence of the dynamics of a process influence 

the conditional transition probabilities of another process. 

TE measures using GC using the Predictability 

improvement methods and extends the concept of SE by 

considering transition probabilities in the detriment of static 

probabilities. In general, if there is no information flow from 

Y process to X process, then Y's status has no influence on 

the transition probabilities of X. 

VII. SYMBOLISATION 

Symbolic methods allow a quantitative assessment, in 

detail, of the dynamics of short time series. Direct analysis of 

successive amplitudes of the signals is based on discrete 

states (symbols). 

A. Joint symbolic dynamics 

Joint symbolic dynamics method, was introduced by 

Baumert [25] and is based on bivariate dynamic processes 

analysis by means of symbols [26]. By using JSD method, 

physiological signal changes, on short term, can be captured 

and it is possible to assess the overall short-term correlations 

between complex physiologic dynamic systems. This 

approach has the advantage of being insensitive to non-

stationary time series and is able to capture nonlinear 

bivariate correlations. 

B.  Symbolic coupling traces 

An extension of JSD method, introduced by Wessel et al. 

[27], called Symbolic coupling traces  method is based on 

structural models analysis and allows the detection of 

directionality (or bidirectionality) of delayed correlations in 

short bivariate time series. 

CONCLUSIONS 

Currently we are working on the development of new 

methodologies, algorithms and various software packages to 

quantify and analyse the relationships and correlations of 
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signals between the central nervous system and autonomic 

nervous system. The approaches presented in the paper are 

promising tools for detecting multivariate information flows 

and may provide additional prognostic information in the 

medical field by surpassing and complementing traditional 

linear techniques.  
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