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Abstract
A dimensional crossover of superconducting fluctuations in an external magnetic field, applied
parallel to the layers, has been found for superconductor/ferromagnet bilayers of Nb/Cu41Ni59.
By lowering the temperature, a reduction of the superconducting nuclei size occurs. As soon as
the size of the nuclei becomes smaller than the thickness of the superconducting bilayer
structure, the dimensionality changes. The temperature dependence of the fluctuation
conductivity exhibits a 2D behaviour in zero and weak magnetic fields in the vicinity of the
critical temperature, switching to a 3D behaviour in a strong magnetic field at low temperatures.

1. Introduction

There exists a fundamental reason for the resistive transition
broadening of a superconductor due to an intrinsic transition
width associated with thermodynamic fluctuations of the
superconducting order parameter. This intrinsic width, �Tc,
is given by the Ginzburg criterion [1], �Tc = Gi Tc, where

Gi ∼ a4
0/ξ

4
0 (1)

is the Ginzburg number, with a0 being the lattice parameter,
ξ0 = h̄vF/2πkB Tc the coherence length, vF the Fermi
velocity of the superconducting material and Tc the critical
temperature. The value of Gi is extremely small for pure
3D conventional superconductors like bulk Sn or Al (Gi3 ∼
10−13–10−14), rising by many orders of magnitude for dirty
and low-dimensional systems [2, 3]. For low-dimensional
superconductors, such as thin films or thin wires, with one
characteristic scale (thickness of the film or diameter of the
wire) comparable to the coherence length ξ0, the intrinsic width
�Tc may be much larger than for bulk material. In particular
for thin films with thickness d , electron mean free path l
and Ginzburg–Landau coherence length ξ(0) ∼ (ξ0l)1/2, the
value of the Ginzburg number Gi2 increases dramatically in
comparison with the respective value Gi3 for bulk material [2]:

Gi2 = (EF/kB Tc)[k3
Fξ(0)2d]−1 ≡ (Gi3)

1/2ξ(0)/d (2)

making the fluctuation effects observable experimentally, as
was investigated in detail in [4, 5]. Here, EF and kF are
the Fermi energy and wavenumber, respectively, and kB is
Boltzmann’s constant.

In many works the broadening of the resistive transition
of thin films and layered superconductors was interpreted in
terms of superconducting fluctuations, rising in the vicinity of
the critical temperature Tc [6–9]. The fluctuation or excess
conductance, σ ′ = σ(T ) − σn ≡ 1/R(T ) − 1/Rn (Rn

is the resistivity of the sample above the superconducting
transition at T � Tc) strongly depends on the superconductor
dimensionality. It is σ ′ ∼ (T/Tc − 1)m , with the critical
index m = (D − 4)/2, which depends on the superconductor
dimensionality D, leading to m = −1/2, −1 and −3/2 for 3D,
2D and 1D superconductors, respectively [6].

For a two-dimensional superconductor (D = 2) in the
weak fluctuation region, at temperatures T > Tc, the excess
conductance σ ′ ∼ (T/Tc − 1)m is inversely proportional to the
temperature. According to Aslamazov–Larkin [10] one gets

[σ ′(T )]−1 = (Rn/τAL)(T − T AL
c )/T AL

c (3)

where τAL = (R�
n e2)/16h̄, and R�

n is the normal state sheet
resistance of the film [7, 10] and T AL

c is the Aslamazov–Larkin
critical temperature [7].

In the critical fluctuation region at temperatures T ∼
Tc, the inverse fluctuation conductivity [σ ′]−1 is expected
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