Усиление и Лазерная Генерация на М-Полосе Люминесценции

Хаджи П.И. Институт прикладной физики Академия наук Молдовы Кишинев, Молдова

Abstract – A new lasing mechanism for semiconductors like CuCl, CuBr is proposed based on the two-photon pumping of biexcitons from the ground state of the crystal and generation or amplification of light in the region of M-band of luminescence due to the optical exciton-biexciton conversion. It was shown that the net gain essentially depends on the level of two-photon pumping and rapidly decreases deep into the crystal due to the spatial depletion of pump radiation.

Ключевые слова — М-полоса люминесценции, экситон, биэкситон

В [1] экспериментально изучен спектр двухфотонного кристалле поглошения света в CuCl. которое сопровождается генерацией биэкситонов из основного состояния кристалла в условиях, когда в области Мполосы люминесценции, обусловленной оптической экситон-биэкситонной конверсией, действует мощный импульс накачки. Этот импульс смешивает экситонное и биэкситонное состояния. Экспериментально наблюдался выраженный Штарк-эффект на биэкситонах. ярко Оказалось, что спектр двухфотонного поглощения слабого, пробного импульса существенно определяется интенсивностью и расстройкой резонанса импульса накачки. Наблюдавшееся расщепление Аутлера-Таунса на увеличивалось при увеличении биэкситонах интенсивности импульса накачки. Детальная теория этого явления для стационарного режима была построена в [2-4], которая удовлетворительно объяснила экспериментально наблюдавшиеся спектры поглощения. В эксперименте [1] и в теории [2-4] предполагалось, что длительности пробного импульса и импульса накачки намного превосходят время релаксации биэкситонов в полупроводнике. Существенно нестационарный режим явлений. происхоляших под лействием лвух ультракоротких импульсов (УКИ) резонансного лазерного излучения, в [1-4] не обсуждался. Полученные в [2-4] результаты свидетельствуют о возможности усиления слабого импульса и получения лазерной генерации на частоте М-полосы.

Пусть на полупроводник типа CuCl падают два импульса лазерного излучения с амплитудами E_1 и E_2 и частотами ω_1 и ω_2 соответственно. Пара фотонов первого импульса находятся в резонансе с собственной частотой возбуждения биэкситонов из основного

Марков Д.А., Надькин Л.Ю. Физико-математический факультет ПГУ им. Т.Г.Шевченко Тирасполь, Молдова markov@spsu.ru

состояния кристалла, а фотоны второго импульса - в резонансе с частотой перехода в области М-полосы. Поэтому первый пучок ответствен за двухфотонное возбуждение биэкситонов, а второй импульс ответствен за оптическую экситон-биэкситонную конверсию (рис. 1). Исследуем возможность усиления излучения с частотой ω_2 за счет энергии поля первого пучка с частотой ω_1 . Такая возможность просматривается уже на качественном уровне. В самом деле, двухфотонная генерация даже небольшого количества биэкситонов из основного состояния кристалла приводит к возникновению инверсии населенностей биэкситонного уровня по отношению к экситонному. Сброс этой инверсии будет способствовать генерации когерентных фотонов на частоте ω_2 и к усилению падающего импульса на этой частоте. Данная схема энергетических уровней и квантовых переходов в какой то мере напоминает известную трехуровневую Л схему, для которой доказана возможность генерации лазерного излучения без предварительно созданной инверсии населенностей уровней. Отличие ее состоит в

Рис.1. Схема энергетических уровней экситона и биэкситона в кристалле типа CuCl и квантовых переходов под действием импульсов с амплитудами полей E_1 и E_2 . том, что в одном плече рассматриваемой нами Л схемы имеет место двухфотонный переход из основного состояния кристалла на верхний (биэкситонный) уровень, а на другом плече возникает однофотонный переход между нижним (экситонным) и верхним (биэкситонным) уровнями. Общим уровнем для обоих переходов является биэкситонный уровень.

Гамильтониан взаимодействия обоих полей с экситонами и биэкситонами полупроводника можно представить в виде

 $H_{\rm int} = -\hbar\mu (b^+ E_1^+ E_1^+ + bE_1^- E_1^-) - \hbar\sigma (a^+ bE_2^- + b^+ aE_2^+),$ (1) где *а* и *b* – амплитуды экситонной и биэкситонной волн поляризации среды, μ и σ – константы двухфотонного возбуждения биэкситонов из основного состояния кристалла и оптической экситон-биэкситонной конверсии соответственно [5, 6]. Используя (1), можно записать гайзенберговские уравнения движения для амплитуд *a* и *b* материальных полей:

$$i\dot{a} = \omega_0 a - i\gamma a - \sigma b E_2^-, \qquad (2)$$

$$ib = \Omega_0 b - i\Gamma b - \sigma a E_2^+ - \mu E_1^+ E_1^+,$$
 (3)

где γ и Γ - константы затухания экситонного и биэкситонного состояний, ω_0 и Ω_0 – собственные частоты экситонного и биэкситонного состояний. Рассмотрим далее стационарное распространение обоих пучков лазерного излучения в среде. Считаем, что фотоны обоих полей находятся в точном резонансе с частотами соответствующих переходов: $2\omega_1 = \Omega_0$, $\omega_2 = \Omega_0 - \omega_0$. Из (2)-(3) легко найти амплитуды экситонной *a* и биэкситонной *b* волн, затем получить выражения для поляризаций среды P_1 и P_2 на частотах полей ω_1 и ω_2 соответственно, и, наконец, найти мнимые компоненты восприимчивостей χ_1'' и χ_2'' , которые имеют вид:

$$\chi_{1}'' = \gamma \frac{2\hbar\mu^{2}|E_{1}|^{2}}{\Gamma\gamma + \sigma^{2}|E_{2}|^{2}}, \quad \chi_{2}'' = -\gamma \frac{\hbar\sigma^{2}\mu^{2}|E_{1}|^{4}}{\left(\Gamma\gamma + \sigma^{2}|E_{2}|^{2}\right)^{2}}.$$
 (4)

Что касается стационарных плотностей экситонов *n* и биэкситонов *N*, то они определяются выражениями

$$N = \gamma^{2} \frac{\mu^{2} |E_{1}|^{4}}{\left(\Gamma \gamma + \sigma^{2} |E_{2}|^{2}\right)^{2}}, \quad n = \frac{\sigma^{2} \mu^{2} |E_{1}|^{4} |E_{2}|^{2}}{\left(\Gamma \gamma + \sigma^{2} |E_{2}|^{2}\right)^{2}}.$$
 (5)

Плотности экситонов *n* и биэкситонов *N* существенно зависят от интенсивностей обоих импульсов. Обе пропорционально плотности растут квадрату интенсивности первого импульса. Действие второго импульса сводится в основном к насыщению переходов в области М-полосы. Как следствие этого плотность биэкситонов монотонно убывает с ростом интенсивности второго импульса, а плотность экситонов сначала растет пропорционально интенсивности второго импульса, достигает максимума при интенсивности этого импульса, равной интенсивности насыщения $I_2 = I_s$, после чего монотонно убывает. Легко также видеть, что отношение плотностей экситонов биэкситонов И растет пропорционально интенсивности второго импульса.

В условиях точного резонанса отличными от нуля являются абсорбционные компоненты восприимчивостей, причем, как следует из (4), $\chi_1'' > 0$, а $\chi_2'' < 0$, тогда как действительные компоненты χ'_1 и χ'_2 точно равны нулю. Это означает, что коэффициент поглощения среды на частоте первого импульса является положительным, а на частоте второго - отрицательным, т.е. первый импульс поглощается, а второй - усиливается. Видно также, что абсолютное значение χ_2'' пропорционально квадрату восприимчивости χ_1'' . Восприимчивости χ_1'' и χ_2'' интенсивностей существенно зависят ОТ распространяющихся полей: они растут с ростом интенсивности первого пучка и убывают с ростом

интенсивности второго пучка. Зависимость восприимчивостей от интенсивности первого пучка носит керровско-подобный характер, а второе поле способствует проявлению эффекта насыщения поглощения (усиления).

Используя выражения (4) для восприимчивостей, можно получить систему нелинейных дифференциальных уравнений для пространственной эволюции полей в полупроводнике в приближении медленно меняющихся огибающих $E_1(x)$ и $E_2(x)$:

$$\frac{dE_{1}}{dx} = -\frac{2\pi\gamma\omega_{1}}{cn_{01}} \frac{2\hbar\mu^{2}|E_{1}|^{2}}{\Gamma\gamma + \sigma^{2}|E_{2}|^{2}}E_{1},$$
(6)

$$\frac{dE_2}{dx} = \frac{2\pi\gamma\omega_2}{cn_{02}} \frac{\hbar\sigma^2\mu^2 |E_1|^4}{\left(\Gamma\gamma + \sigma^2 |E_2|^2\right)^2} E_2 \,. \tag{7}$$

При получении (6) – (7) мы положили $k_1^2 = \varepsilon_{01} \omega_1^2 / c^2$, $k_2^2 = \varepsilon_{02}\omega_2^2/c^2$, $n_{01} = \sqrt{\varepsilon_{01}}$, $n_{02} = \sqrt{\varepsilon_{02}}$, где k_i – волновые вектора полей, $\varepsilon_{0i}(n_{0i})$ – фоновые диэлектрические проницаемости (показатели преломления), которые считались положительными (*i*=1, 2). Из (6) - (7) следует, что амплитуда поля E_1 (поля накачки) убывает с расстоянием по мере распространения в кристалле, начиная с переднего торца. Скорость пространственного убывания поля E_1 тем больше, чем больше интенсивность этого поля. Что касается амплитуды поля E_2 , то она только растет с ростом расстояния от переднего торца, причем скорость роста пропорциональна квадрату интенсивности волны накачки. Скорости пространственного изменения обоих полей убывают с ростом интенсивности В области М-полосы. Пространственная эволюция амплитуд обоих полей возможна, если только оба поля присутствуют на переднем торце кристалла. Если, например, поле E₁ отсутствует на торце кристалла, то тогда невозможна генерация поля E_2 на частоте ω_2 и, следовательно, оба поля отсутствуют в среде. Если же поле E_2 отсутствует на переднем торце кристалла, то это поле отсутствует и в объеме, но поле E₁ отлично от нуля и распространяется в среде.

Введем далее интенсивности полей $I_{1,2} = \frac{c}{8\pi} |E_{1,2}|^2$ и пронормируем интенсивность I_2 на интенсивность насыщения $I_s = \frac{\Gamma \kappa}{8\pi \sigma^2}$ ($I_2 = I_s y$), а интенсивность I_1 на критическую интенсивность $I_c = \frac{c}{8\pi} |E_c|^2$, где критическое поле E_c было введено в [5] и определяется из условия равенства вероятностей однофотонного перехода из основного состояния кристалла в экситонное и двухфотонного перехода из основного состояния в

биэкситонное:
$$g = \mu E_c$$
 [6]. Тогда $I_c = \frac{c}{8\pi} \frac{g^2}{\mu^2}$ и $u = I_1/I_c$

Из (6) и (7) находим, что пространственные профили нормированных интенсивностей u(x) и y(x) распространяющихся импульсов при этом определяются из уравнений

$$\frac{du}{dx} = -\frac{2\omega_1}{cn_{01}} \frac{4\pi \hbar g^2}{\Gamma} \frac{u^2}{1+y},$$
(8)

$$\frac{dy}{dx} = \frac{\omega_2}{cn_{02}} \frac{4\pi\hbar g^2}{\Gamma} \frac{I_c}{I_s} \frac{u^2 y}{(1+y)^2}.$$
(9)

Из (8)-(9) нетрудно получить интеграл движения, связывающий функции u(x) и y(x) в произвольной точке пространства:

$$u = u_0 - 2\frac{\omega_1}{\omega_2} \frac{n_{02}}{n_{01}} \frac{I_s}{I_c} \left(y - y_0 + \ln\frac{y}{y_0} \right), \tag{10}$$

где $u_0 = u \big|_{x=0} = I_{10}/I_c$ и $y_0 = y \big|_{x=0} = I_{20}/I_s$ – нормированные интенсивности импульсов, падающих на передний торец кристалла, I_{10} и I_{20} – заданные интенсивности обоих импульсов на торце. Можно ввести коэффициент усиления β для поля E_2 , который определим равенством

$$\beta = \frac{1}{y} \frac{dy}{dx} = \alpha_{ex} \frac{\gamma}{\Gamma} \frac{I_c}{I_s} \left\{ \frac{u_0 - 2\frac{\omega_1}{\omega_2} \frac{n_{02}}{n_{01}} \frac{I_s}{I_c} \left(y - y_0 + \ln\frac{y}{y_0} \right)}{1 + y} \right\}^2, \quad (11)$$

где α_{ex} – коэффициент экситонного поглощения: $\alpha_{ex} = 4\pi \hbar \omega_2 g^2 / (cn_{02}\gamma)$. Значение коэффициента усиления $\beta_0 = \beta|_{x=0}$ у переднего торца кристалла определяется падающими интенсивностями I_{10} и I_{20} обоих импульсов:

$$\beta_0 = \alpha_{ex} \frac{\gamma}{\Gamma} \frac{I_c}{I_s} \frac{u_0^2}{\left(1 + y_0\right)^2}.$$
 (12)

Нормированная интенсивность y(x) усиливаемого излучения на лазерном переходе определяется выражением

$$\int_{y_0}^{y} \frac{dy(1+y)^2}{y \left[u_0 - 2\frac{\omega_1}{\omega_2} \frac{n_{02}}{n_{01}} \frac{I_s}{I_c} \left(y - y_0 + \ln\frac{y}{y_0} \right) \right]^2} = \alpha_{ex} \frac{\gamma}{\Gamma} \frac{I_c}{I_s} x.$$
 (13)

Из рис.2 видно, что интенсивность поля накачки u(x) быстро убывает с расстоянием вглубь кристалла, тогда как интенсивность y(x) усиливаемого сигнала в области

Рис.2. Пространственные профили нормированных интенсивностей полей u и y и коэффициента усиления β/α_{ex} при

 $n_{01} = n_{02}, I_s = I_c, \quad \gamma = \Gamma, \, \omega_1 = \omega_2$ и $u_0 = 5, \, y_0 = 0.01$.

М-полосы растет. Что касается распределенного коэффициента усиления $\beta(x)$, то он монотонно убывает с расстоянием из-за пространственного истощения накачки.

интенсивности усиливаемого сигнала от интенсивности импульса накачки (интеграл движения (10)). Уменьшение интенсивности накачки приводит к увеличению интенсивности генерируемого излучения. Таким образом,

зависимости

график

рассмотренная модель свидетельствует о возможности усиления слабого сигнала в области

М-полосы за счет накачки в области двухфотонного поглощения с образованием биэкситонов в кристаллах типа CuCl. По-видимому, возможно функционирование модельного устройства и в тонкопленочном варианте [2].

ЛИТЕРАТУРА

- R. Shimano, M. Kuwata–Gonokami. Phys. Rev. Lett., 72, № 4, 530 (1994).
- [2] А.В. Коровай, П.И. Хаджи. Квантовая электроника, 31, №10, 937,(2001).
- [3] P.I. Khadzhi, A.V. Corovai, O.V. Korovai, D.V. Tkachenko. Moldavian J. Phys. Sci., 1, № 1, 152 (2002).
- [4] П.И. Хаджи, А.В. Коровай, Д.В. Ткаченко. ФТТ, 44, №5, 774 (2002).
- [5] E. Hanamura. Solid State Commun., 12, № 9, 951 (1973);
 J. Phys. Soc. Japan 39, № 6, 1506 (1975).
- [6] П.И. Хаджи. Нелинейные оптические процессы в системе экситонов и биэкситонов в полупроводниках. — Кишинев, Штиинца, 1985.

Chisinau, 20–23 May 2015