
5
th

 International Conference “Telecommunications, Electronics and Informatics” ICTEI 2015

Chisinau, 20—23 May 2015

– 282 –

Functional Language for Map-Reduce Architecture

Malița M.

Computer Science Department

Saint Anselm College

Manchester, NH

mmalita@anselm.edu

Ștefan G. M.

Electronic Devices, Circuit and Architectures Dept.

Politehnica University of Bucharest, Fac. ETTI

Bucharest, Romania

gstefan@arh.pub.ro

Abstract — Functional forms proposed by John Backus are

used to specify a Map-Reduce Architecture. The associated

functional programming language is defined as a Scheme-like

language.

Key words — parallel computing, parallel architecture, parallel

programming, functional languages, Scheme-like programming

language

I. INTRODUCTION

The parallel abstract machine defined in [4], as an integral

parallel machine able to perform data-, speculative-, reduction-,

time-, and thread-parallelism, has a recursive Map-Reduce

organization. It describes parallelism, from the level of one-

chip solution to the cloud implementation, based on Stephen

Kleene’s mathematical model for computation [3]. The

architectural description of this abstract machine is provided in

the next section using the concept of Functional Programming

Systems (FPS) introduced by John Backus [2]. In the third

section is defined a high level programming language for the

Map-Reduce organization and architecture. The “View from

Berkeley” [1] will offer the theoretical environment to validate

the whole approach.

II. MAP-REDUCE RECURSIVE ARCHITECTURE

Backus’ system contains functions which map objects into

objects. An object is an atom x or a sequence <x1,…,xp>, where

xi are atoms or objects. There are three types of functions:

 primitive functions: performed atomically

 functional forms: expand functions on sequences

 definitions: develop programs

Because an object could be an atom or a sequence of atoms,

FPS provide an adequate description for the computation able

to exploit at the maximum the features of a multi- or many-

core engine.

A. Primitive Functions

Primitive functions are applied to atom or sequences. For

example:

1) Arithmetic & Logic: consist of binary operations
op2:x≡((x=<y,z>)&(y,z atoms))→yop2z

where: op2 ∈ {add,mult,eq,lt,gt,and,or,...}

or unary operations
op1:x≡((x=y)&(y atom))→op1y

where: op1 ∈ {inc,dec,zero,not,…}

2) Operations on Sequences: such as

a) Selector: for x = <x1,…,xp> the i-th element is

selected, as follows i:x ≡ xi

b) Distribute: an atom is distributed along a sequence
distr:<y,<x1,...,xp>>)≡<<y,x1>,...,<y,xp>>

c) Transpose: is applied to a two-dimension array

trans:<<x11,...,x1m >,...,<xn1,...,xnm>>)≡

<<x11,...,xn1>,...,< x1m,...,xnm>>

B. Functional Forms

The primitive functions are expanded to parallel execution

using functional forms as follows:

1) Apply to all: for x = <x1,…,xp> the function f is

mapped as αf:x ≡ <f:x1,…,f:xp>

2) Construction: the object x is mapped to a sequence of

functions as [f1,…,fp]:x ≡ <f1:x,…,fp:x>

3) Insert: the sequence x = <x1,…,xp> is reduced to an

atom by /f:x ≡f:<x1, /f<x2,…,xp>>

4) Composition:
(fp○fp-1○…○f1):x ≡ fp:(fp-1:(…(f1:x)…))

5) Threaded Construction: the sequence x=<x1,…,xp> is

mapped to the sequence of functions, as follows:
θ[f1,…,fp]:x ≡ <f1:x,…,fp:x>

The five functional forms correspond to five types of

parallelism supported by Kleene’s pure theoretical approach.

C. Definitions

In order to write programs are used definitions:
Def new_function_symbol≡functional_form

For example, this program is computing the inner product of

two sequences seen as vectors:
Def IP ≡ (/ add)○(α mult)○ trans

B. Recursive Hierarchy

The structure associated with the previously defined

architecture is a Map-Reduced recursive hierarchy represented

in Fig. 1, where:

I. eng: execution or processing units associated with binary or

unary primitive functions

II. mem: data or data & program memory

III. REDUCE: log-depth structure associated with the insert

functional form

IV. CONTR: used to compose the functions defined using
Def

V. MEMORY: stores data and programs for the entire system.

5
th

 International Conference “Telecommunications, Electronics and Informatics” ICTEI 2015

Chisinau, 20—23 May 2015

– 283 –

The linear array of cells, each containing a pair (eng, mem),

represents the MAP level. In a recursive view, the sub-system

MAP+REDUCE+CONTR could be assimilated with an eng,

while MEMORY with a mem unit. Thus, the representation

from Fig. 1 stands also for a recursive definition of the Map-

Reduce organization/architecture, from the chip level up to

cloud level.

Fig. 1. Map-Reduce recursive organization.

Backus’ description is able to cover any level in the

hierarchical development of a Map-Reduce system.

III. MAP-REDUCE LANGUAGE

The language developed using a Scheme-type language

catches both, the map aspect and reduce aspect of our

architecture. We shall call it Map-Reduce Programming

Language (MRPL).

The map functions are of three types: mapFunc, mapArg,

mapBoth.

(define(mapFunc func argList)

 (cond((null? argList)())

 (#t(cons(func(car argList))

 (mapFunc func (cdr argList))

))))

(define(mapArg funcList arg)

 (cond((null? funcList)())

 (#t(cons((car funcList)arg)

 (mapArg (cdr funcList)arg)))

))

(define(mapBoth funcList argList)

 (cond((or(null? funcList)

 (null? argList))())

 (#t(cons((car funcList)

 (car argList))

 (mapBoth (cdr funcList)

 (cdr argList))))

))

Here are a few examples of using the map function:

(mapFunc Inc '(1 2 3 4))->(2 3 4 5)

(mapArg '(Add Sub Mult Div) '(2 5))->

 (7 -3 10 0.4)

(mapBoth '(Add Mult Sub Div)

 '((2 5)(3 4)(4 3)(5 2)))->(7 12 1 2.5)

The reduce functions have the form:

(define(myReduce binaryOp argList)

 (cond((atom? argList)argList)

 (#t(binaryOp(car argList)

 (myReduce binaryOp

 (cdr argList))))

))

Here are examples of reduction function use:

(myReduce Add '(1 2 3 4 5)) -> 15

(myReduce Max '(3 2 5 8 1 6))-> 8

(myReduce BwOr '(3 2 7 6 3)) -> 7

A program at any level in the recursive hierarchy can be

described using the above introduced structures. For example,

the inner product of two vectors is computed by:

 (define(inProd firstVect secondVect)

 (myReduce Add (mapFunc Mult

 (firstVect secondVect)

)

))

IV. CONCLUDING REMARKS

The Map-Reduce recursive architecture is supported and

validated by the functional forms introduced by John Backus.

The MRPL is an appropriate functional language for

writing programs for parallel accelerators. The functional

aspects of MRPL allow the same programming style for any

level in the recursive hierarchy of parallel computing machines

(see Fig.1)

BIBLIOGRAPHY

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.

Patterson, William Lester Plishker, John Shalf, Samuel Webb

Williams and Katherine A. Yelick, “The landscape of parallel

computing research: A view from Berkeley”, Technical Report

No. UCB/EECS-2006-183, December 18, 2006.

[2] John Backus, “Can Be Programming Liberated from the von

Neumann Style? A Functional Style and Its Algebra of

Programs”, Communications of the ACM, 21, 8, 1978, pp. 613-

641.

[3] Stephen Kleene, “General recursive functions of natural

numbers”, Mathematische Annalen 112, 5, 1936.

[4] Gheorghe M. Ștefan, Mihaela Malița, “Can One-Chip Parallel

Computing Be Liberated from Ad Hoc Solutions? A

Computational Model Based Approach and Its Implementation”,

18th International Conference on Circuits, Systems,

Communications and Computers (CSCC 2014), Santorini

Island, Greece, July 17-19, 2014, pp. 582-597.

