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Abstract – In this work, we present two distinct approaches for 

modeling of mode-locked lasers. These models are based on the 

first order partial differential equations for counter-propagating 

optical fields and the delay differential equation for a one-

directionally propagating field, respectively. We demonstrate 

how simulations and different type of analysis of these models 

allow us to get a better understanding of various peculiarities of 

the complicated dynamics in ML lasers and helps to improve the 

design of the devices. 
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I. INTRODUCTION 

Mode-locked (ML) edge-emitting semiconductor lasers are 

widely used for generation of short optical pulses with 

repetition rates of a few to hundred GHz. Modeling, 

simulation and analysis of mode locking in single- or multi-

section quantum-well, quantum-dash or quantum-dot 

semiconductor lasers plays a crucial role seeking to 

understand and control various instabilities of the ML lasers. 

Mode-locking can be observed in semiconductor laser 

devices of different geometry. For example, it was found in 

edge-emitting lasers with an external modulator; vertical-

cavity, edge-emitting or ring lasers with a single or several 

integrated or external saturable absorbers (SAs) [1-5], see Fig. 

1(a); or single-section quantum-dash or quantum-dot based 

Fabry-Perot (FP) type edge-emitting lasers [6]. 

 

Fig. 1. Schematic representation of several ML lasers. 

ML lasers can also have several amplifying, passive or 

distributed Bragg reflector (DBR) sections supplemented by 

individual electrical contacts, see Refs. [1,2,6] and Fig. 1(b) 

and (c)]. These additional sections provide a better control of 

the laser operating states. For example, DBR sections allow a 

better control of the emission wavelength [2] or a better 

integration of the ML laser into the optical circuits [6]. To 

improve the quality of already emitted ML pulsations, one can 

also apply an additional forcing. It can be a periodic 

modulation of the SA voltage [5], an injection of a single or 

several coherent external optical beams, or a reinjection of the 

emitted field with an appropriately selected time delay. 

Mode-locking itself is an operation regime of the laser 

during which a periodic sequence of short optical pulses is 

emitted, and the period of this sequence is strictly determined 

by the field roundtrip time in the laser cavity. Short optical 

pulses, in this case, are due to a superposition of multiple, in 

the frequency domain equally separated longitudinal optical 

modes, having a certain fixed (locked) phase relation between 

each other. A simple example of the ML pulsations is given by 

a complex (field emission) function    
1

n
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E t f t


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  is the contribution of j -th optical 

mode, j   is the mode frequency, and the relative phases 

j  of all modes are locked by a single linear relation 

 =j j  . Then the field intensity 
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Several more realistic simulated periodic states of some 

ML laser are presented in Fig. 2. The top row diagrams 

represent a fundamental ML state having a single short-pulse 

emission during the field roundtrip time T  in the laser cavity. 

For different gain section bias current or negative SA voltage, 

one can also find other periodic states, such as harmonic ML 

pulsations (two equal pulses during the time T  and high 

suppression of each second spectral line in radio-frequency 

(RF) and optical spectra, see second row of Fig. 2), pulses 

with broad trailing edges (third row of Fig. 2) or emission of 

two or more different pulses during the same time T  (fourth 

row of Fig. 2). Moreover, besides of the regular periodic states 

one can also observe a variety of irregular “imperfect” mode-

locking states having significant time jitter and small side 

mode suppression in the RF spectrum. 
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Fig. 2. Four typical simulated periodic states of the ML laser. Left: field 

emission during a single field roundtrip in the cavity. Middle: radio-frequency 

spectra. Right: optical spectra. 

 

Below in this work we present two distinct approaches for 

modeling of mode-locked lasers. The first approach is based 

on the traveling wave (TW) model, which is a system of one-

dimensional first-order PDEs resolving temporal-longitudinal 

dynamics of the counter-propagating optical fields and carriers 

[7]. Another method is given by a system of delay differential 

equations (DDEs) for a one-directional propagation of optical 

fields in the ring cavity (Fig: 1(d)) and carriers [8]. Both these 

models are widely used not only for numerical simulation of 

different ML lasers, but also for a detailed analysis of the 

typical operating regimes of ML lasers. In this work, we 

briefly present several analytic and semi-analytic methods for 

analysis of model equations. We show, how these methods 

give a better understanding of the complicated dynamics in 

ML lasers, allow to improve existing or predict new operation 

regimes, as well as to improve the design of the ML devices. 

II. OPTICAL MODES OF THE TW MODEL 

The traveling wave equations [7] of multi-section edge-

emitting semiconductor laser can be written in the following 

operator form: 
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Here, the four-component vector-function  ,z t  

represents the slowly varying complex amplitudes of the 

counter-propagating optical fields, E , and polarization 

functions, p
, which together with the parameters  ,  , 

and g are used to model the material gain dispersion. gv is the 

group velocity,    is the field coupling factor within the DBR 

sections, 0R  and LR  are the field intensity reflections at the 

laser facets =0z  and =z L . Function   is the wave 

propagation factor depending on the dynamically changing 

carrier density within the active and SA parts of the device. 

For the considered dynamical models of carriers in quantum-

well and quantum-dot based lasers see Refs. [7] and [3], 

respectively. 

Usually, the dynamics of carriers is slow so that in any 

short time interval   remains nearly constant. For each fixed 

distribution  z  the operator  H   from Eq. (1) together 

with the boundary conditions for the fields E  gives rise to 

the spectral problem [9] 
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All complex-valued sets     , ,z    satisfying Eq. (2) 

are instantaneous longitudinal optical modes of the considered 

system. After the suitable normalization of the eigenfunctions 

 , z   (by, e.g., assuming  
,

,0 1
E j

   ), the field function 

 ,z t can be represented as sum of suitably normalized 

modal components: 

         .e, , xp  ,j j j jj
z t f t z f t i t               (3) 

Here, j  are time averages of the complex eigenvalues, 

  ,j z t , Im j  determines growth/decay of the mode, 

and the optical frequencies  Re j  are nearly equidistant for 

the FP-type lasers. 

 

We have used a mode expansion (3) of the optical field 

and its consequent reconstruction from only several selected 

modes for investigation of the broad ML pulses observed 

experimentally in standard two-section quantum-dot lasers 

[3,4]. 

 

 
Fig. 3. Simulated ML pulsations with a broad trailing edge plateau [4]. (a): 

Calculated time trace of the field intensity [thick gray curve] and its 
reconstruction using 4 and 50 modes with largest amplitudes [thin curves]. 

(b): optical spectra [grey lines], the relative mode phases (above) and mode 

amplitudes (below) vs. relative mode wavelengths [bullets]. 
 

Our theoretical study presented in Fig. 3 has shown that 

the shape of the simulated ML pulse depends strongly on the 

relations between the amplitudes and phases of the complex 
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modal functions  jf t . The complex emitted field function in 

the considered case can be represented as a sum of two 

functions, both determined by the superposition of several 

modes. The first of these functions is the sum of all modes 

with almost zero relative phases (black upper bullets in Fig. 

3(b)) and similar intensities, decaying uniformly with an 

increasing mode frequency (wavelength) separation from the 

gain peak frequency (black lower bullets in the same figure). 

This function is responsible for the main sharp field intensity 

peak of the ML regime (see Fig. 3(a)). The second function is 

determined only by a few most intensive modes (after 

subtracting their moderate contribution to the first function) 

with the relative phases located along some slanted line (upper 

blue bullets in Fig. 3(b)). The 4-mode reconstruction of the 

optical field (blue curve in Fig. 3(a)) has a related ~20% of 

period peak intensity dislocation. The superposition of two 

such complex periodic functions with different peak intensity 

positions implies a strong asymmetry of the ML pulse. 

Another application of our mode analysis was given in 

Ref. [8]. In this case, we have analyzed ML pulsations in 

quantum dash based lasers consisting of a single active section 

and three different monolithically integrated DBR sections at 

the right side of the device. In all cases, the length of the 

whole device was kept constant, whereas the length DBRl  and 

the coupling DBR  of the DBR part were (250 m, 40/cm), 

(50 m, 200/cm), and (25 m, 400/cm), respectively. 

Measurements of these devices have shown, that the quality of 

ML pulsations in the laser with DBR =400/cm was 

comparable to that one of the simple FP type laser. On the 

other hand, the pulse quality in DBR =200/cm laser was 

strongly degraded, and DBR =40/cm laser has shown no ML 

pulsations at all. 

 

 
Fig. 4. Calculated mode damping (top) and frequency separation of the 
adjacent modes (bottom) vs. mode frequency for the FP laser with non-

vanishing LR  (black bullets, =0 ) and the lasers with different integrated 

DBR sections satisfying the relation =1DBR DBRl  and vanishing reflectivity 

LR at the DBR section facet. 

Our theoretical mode analysis presented in Fig. 4 provides 

an explanation of experimental observations. An integration of 

the DBR section introduces a significant modal gain 

dispersion, supporting only those modes that are within the 

stop-band of DBR. Consequently, the remaining 4-5 main 

modes in the laser with DBR =40/cm are simply not enough 

for the formation of the ML pulsations (see green triangles in 

Fig. 4(a)). On the other hand, the integration of DBRs 

degrades the equidistance of the modes, which is also a crucial 

condition for the formation of the ML pulsations (lower panel 

of the same figure). For the lasers with DBR =400/cm this 

violation is marginal (blue squares in Fig. 4(b)). On contrary, 

in the lasers with DBR =200/cm it becomes important (red 

diamonds in the same figure) and implies a significant 

broadening of the RF spectral line. 

 

III. ASYMPTOTIC ANALYSIS OF THE DDE MODEL 

Another model of passive and hybrid ML in lasers with the 

SA is based on the system of DDEs that is derived from the 

TW equations under the assumption of a one-directional 

propagation of the optical fields in the ring cavity (see Ref [8] 

and Fig. 1(d)):  
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Here, functions E, G and Q denote the complex field 

amplitude, the lumped saturable gain and saturable absorber, 

respectively. The parameters T , 0g , 0q , s ,  ,  , ,g q , and 

,g q  represent the field round-trip time in the cold cavity, the 

pump current in the gain section, the unsaturated absorption in 

the SA, the ratio of the gain and the SA saturation intensities, 

the width of the spectral filtering, the linear non-resonant 

attenuation factor per cavity round-trip including field 

reflectivity at the facets, the gain and the SA relaxation rates, 

and the linewidth enhancement factors, respectively. The 

function  aF t  in this example represents a 1
mf

-periodic 

modulation of the negative voltage in the SA, whereas a  is the 

amplitude of this modulation [5]. Such periodic forcing helps 

to improve the quality of passive ML pulsations. Namely, once 

the detuning = p mf f f   between the passive ML frequency 

pf  and the modulation frequency mf  is small enough, the 

pulsation frequency can be entrained by the modulation 

frequency. These hybrid ML pulsations usually have a reduced 

time jitter, which is mainly determined by the low jitter of the 

external modulation. 

The experimental and numerical estimation of the 

frequency detuning ranges admitting hybrid ML for all 

modulation amplitudes is an important, but also a time-

consuming task. In theory, it is related with simulation of many 

long transient intervals (each one with a slightly modified mf  

and/or amplitude a ) and a consequent check of the periodicity 

of the resulting trajectory. The estimation of the hybrid ML 

existence region in modulation amplitude - detuning plane for a 

single set of model parameters can take a whole day of 
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simulations. To accelerate this study, we have investigated the 

linearization of the DDE model (5) around the passive ML 

solution in the limit of small modulation amplitude a  [5]. We 

have found a semi-analytic expression for the range of the 

scaled detuning f a  admitting the existence of the periodic 

hybrid ML solution. This new technique allows to get 

reasonable locking range estimates in a couple of minutes so 

that a more detailed study of the hybrid ML dependencies on 

all other parameters also becomes possible. 

 

 
Fig. 5. Estimated length of the interval of the frequency detuning f  

admitting periodic hybrid ML state for different modulation amplitudes a  for 

(a): standard, (b): SH, and (c): HF modulations. Thick solid curves: obtained 

by direct numerical integration of Eqs. (1)-(4) with tuned mf and a . Thin 

dashed lines: semi-analytic asymptotic estimates. 

 

The width of the locking range for a selected passively ML 

state and modulation function    =cos 2 mF t f t  is shown in 

Fig. 5(a). Panels (b) and (c) of the same figure represent the 

width of the locking regions for the modulation frequency 

2m pf f  (second harmonic, or SH modulation with 

= 2p mf f f  ) and 2m pf f  (half frequency, or HF 

modulation with = 2p mf f f  ). The frequency detuning in 

these cases indicates the difference between pf  and the pulse 

repetition rate of the hybrid ML (which, in general, differs 

from the exact frequency of the solution). We note that our 

algorithms are working properly for standard and SH 

modulations (solid curves and dashed lines almost coincide), 

but fail to show a proper locking regions for HF modulation, 

where the locking range dependence on the amplitude a  is 

nonlinear. 
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