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Abstract — Relationships inherent in the processes that occur 

at the initial stage of a high-voltage (electric field 

strength 1 MV cmE  ) gas discharge with participation of 

nonmetal nanofilms adsorbed to the cathode are considered. It is 

shown that the current-voltage characteristic of the pre-

breakdown current obeys the Fowler–Nordheim equation 

corrected for the quantum character of image forces.  Based on 

electronic polaron theory, a general expression for the field 

emission current at the contact of between two media is obtained. 

It is shown that for the above-mentioned fields, the field 

dependence of the tunnel current is appreciably different from 

the well-known classical relations. 

Key Words — Nano layers, field emitter arrays, high-voltage 

gas discharge, polaron.                                                         

I. POTENTIAL ENERGY OF AN ELECTRON IN ADSORBED 

DIELECTRIC NANOFILM 

In our previous calculations of the current density of pre-

breakdown field emission in a high-voltage discharge [1], we 

took into account the clusters of atoms or molecules adsorbed 

to the cathode. In gas discharges, adsorbates can form 

continuous films on the cathode surface. Precision 

experimental investigations of field and photostimulated field 

emission in metal–dielectric–semiconductor (MDS) structures 

have revealed a discrepancy between experiment and theory 

(Fowler–Nordheim equation) at high fields (over) [2–4]. For 

this reason, it is of interest to extend the theory (see, e.g., [5]) 

for the range of fields where image forces show a quantum 

behavior.  

We consider a contact between a metal occupying a semi-

infinite half-space   and a tunnel thin dielectric film of 

permittivity. For the case of an external electric field of 

strength   applied to the structure, the potential energy of an 

electron in the dielectric at the metal–dielectric interface is 

given by the expression 

  ( )  ,  0( ) ,i eFW x W W eEx x x      

where FW  is the Fermi energy counted from the bottom of the 

metal conduction band,   is the work function, ( )ieW x  is the 

electronic part of the quantum potential of the image forces, 

and e  is the elementary charge. 

The emission current can be calculated by the expression 

for ( )ieW x  [6] derived based on the polaron theory [6–7] that 

is a generalization of Toyozawa’s electronic polaron theory 

[8–9] for the case of a semi-bounded crystal with spatially 

dispersed permittivity. The expression obtained in Ref. 7 can 

be approximated by a simple formula: 
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where   is the permittivity of the adsorbed film, which can 

range from unity to the value of   characteristic of a bulk 

sample of the given material, and 
0x

 
is the interpolation 

parameter determined from the condition of between the 

asymptotic value of ( )ieW x  found from the approximate 

expression (2) and its exact value [8] in the limit 0x  .  

Numerical analysis has shown that the quantity 0x  can be 

approximated, to within 1 3%  for the actual range of 0x  

values, by the expression 
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where  is the reduced Planck’s constant (Dirac constant), 

FR  is the Fermi radius,  
1/2

2S pSR m , m  is the effective 

mass of an electron in the dielectric, 
pS pV    is the 

frequency of the surface oscillation for the dielectric film–

vacuum interface, pV  is the frequency of the longitudinal 

volumetric plasma oscillation of valence electrons, and 
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is a constant for the electron–plasmon interaction. 
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II. CURENT DENSITY OF THE FIELD EMISSION THROUGH 

ADSORBED NONMETAL FILM 

The following rearrangements are performed in the sequence 

used in Ref. 5, where the current density of the emission from 

a metal into a dielectric is calculated in terms of the 

Sommerfeld model as 

       
0

, , , ,Fj F T N W W T D W E dW



   

where ( )W W x  is the energy of an electron counted from the 

conduction band bottom; ( , )D W E  is the probability that an 

electron will penetrate the barrier, calculated in a semiclassical 

approximation;  , ,FN W W T  is the number of electrons of 

energy close to W  that are incident on the barrier per unit area 

in a second, and T is the absolute temperature. 
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Here k  is Boltzmann’s constant and 2h   is Planck’s 

constant. 

Substituting (7) and (8) in (6) and performing integration, 

we obtain 
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The function ( )a ay  is an analog of the Nordheim function. It 

is tabulated by using the following expression, derived in 

view of an adsorbed film present on the emitter, which 

contains elliptic integrals  K k
 
and  E k  of the first and the 

second order, respectively: 
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where 
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The main difference of ( )a ay  from the well-known 

Nordheim function is that its argument contains the 

parameters 0x  and   that are characteristics of the potential 

barrier.  The limiting electron energy, lW  (energy at the point 

of maximum of the potential barrier) is determined by the 

expression 
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The total current through the metal–dielectric interface is 

determined in Hartree units as 
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where the lower limit of the first integral is the electron 

energy at the bottom of the metal conduction band. 

With the criteria derived in Ref. 5, relation (13) yields, in 

the approximation of low temperatures, the formula for the 

field emission current density  
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where the effective work function   depending on parameter 

0x  is calculated by the formula 
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The function ( )a at y  in the pre-exponential factor can also 

be expressed in terms of elliptic integrals: 
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Expression (15) is a generalized Fowler–Nordheim formula 

represents for the field emission current which takes into 

account the quantum behavior of the image forces.  

III. COMPUTATIONAL FORMULAS 

Using the coefficients relating the Hartree units to 

conventional units of physical quantities, we can obtain more 
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convenient and practical formulas. In this case, we must use 

the following multiplying factors of current density, electric 

field strength, and energy, respectively:  

 
3 9 7 14 22.37 10 A cm ,m e     

  4 2 27.2eV,me    

 
2 5 4 35.15 10 MV cmm e     

If necessary, a factor 04 , where 0  is the electric constant, 

is also used.  

Then formula (14) becomes 
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For the effective work function   we obtain from (15)  
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Substituting numerical values of the universal constants 

expressing the parameter 0x  in nanometers, we have from 

(18) the computational formula 

  5
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Obviously, for the field range under consideration (up 

to100 MV cm ) and actual values of 0x  of the order of tenths 

of a nanometer, the second bracketed term can be neglected. 

Then we have 

 
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The argument ay  of the tabulated function ( )a ay  is 

calculated by the formulas  
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For the coefficient   it is necessary to use the expressions 
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As with the Fowler–Nordheim equation, the function 

( )a at y is slightly different from unity. In this case, we have 

from (17)  
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The use of relations (20)–(23) results in the final 

computational formula for the current density of field 

emission from a metal coated with a nonmetal nanolayer 

( 1  ) of adsorbed atoms or molecules 
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Let us compare the current density values obtained by using 

(24) with those resulting from the well-known Fowler–

Nordheim equation for a clean metal surface 
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For the actual work function and electric field strength ranges 

( 3.8 eV,   100 MV cmE  ), the parameter y  is no 

greater than unity. For this case [5], the function ( )y , like the 

earlier introduced function ( )a ay , can be expressed in terms 

of elliptic integrals: 
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As a result, the ratio of the density of the current from a 

smooth metal surface coated with a nanolayer of adsorbed 
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atoms or molecules to that of the current from a pure surface is 

determined as 
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The computational formula is 


 00.033

aj

j x E







 

 
 

3 2

00.033
exp 68.5 ( )a a

x E
y

E

 


 
  
  
 

 

The ratio aj j  is presented in Fig.1 as a function of the 

applied electric field strength for different values of the work 

function .  

 
Fig. 1. The ratio of current density aj  to that of the field emission current 

from a clean metal surface versus electric field strength E for different values 

of work function  . 

 

CONCLUSIONS 

1. Figure 1 shows an appreciable decrease in field emission 

current for all values of the parameter. It is of interest that the 

difference between   and   is less pronounced for the lower 

fields. 

 2. The rather weak dependence   on the work function of 

the base cathode material is worthy of notice. 

 3. The field emission current noticeably decreases with 

parameter   [quasiparticle (electronic polaron) radius]; that is, 

the quantum behavior of the image forces is pronounced in 

strong electric fields. 

 4. The variations in the work function of the cathode 

material due to the electronic polaron effect have a rather 

weak influence on the field dependence of. 
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