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Abstract. In this paper we propose a method for measuring the negative refraction 
index of films of optically transparent materials. The method is based on recording the 
direction of propagation and the shifting of the ray reflected from the film. It is shown 
that the method can be applied for both macroscopic and nanometric samples. 
However, a precise control of parameters of the radiation source is needed for using 
this method in the case of nanometric samples. The conditions for a composite 
medium to acquire a negative refractive index are discussed. 
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1. INTRODUCTION 

New nanomedia with unusual properties are nowadays in the focus of 
attention of many research groups. Optical nanomedia with negative refraction 
index are of especial interest [1, 2, 3]. However, all the used metamaterials 
represent systems of heterogeneous elements with substantially different 
properties, and there is a contradiction when dealing with such systems. On the one 
hand, one has to use components with dramatically different properties. On the 
other hand, one has to get a substantially homogeneous optical metamaterial for 
wavelengths of radiation comparable with the mean distance between the elements. 
Actually, a heterogeneous system consisting of individual particles can behave like 
a virtually homogeneous optical metamaterial independently on the wavelength of 
radiation, if some specific conditions are satisfied. However, one needs to have a 
simple and reliable method for the determination of optical parameters of 
metamaterials in order to be able to control the fulfillment of these conditions. The 
usual scheme for measuring the negative refraction index of a plate of a transparent 
material implies measuring the parameters of the real image of a point source of 
radiation. However, the experimental methods for testing such properties require 
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sophisticated tools of nanomeasurements [4, 5]. Apart from this, such a scheme is 
actually applicable only for the case of n = 1, when ε = µ= –1 [6]. 

In this paper we propose to use a method based on the well known 
experimental technique for the investigation of Goos-Hänchen effect, which allows 
one to evaluate the degree of homogeneity and refraction coefficient of the medium 
[7]. 

2. A SIMPLE MODEL OF OPTICAL NANOMEDIUM  
WITH NEGATIVE REFRACTION INDEX 

As mentioned above, usually the negative refraction index of a plate of a 
transparent material is measured on the basis of a scheme with the real image of a 
point source of radiation (Fig. 1). 

 
Fig. 1 – A usual scheme for the determination of the negative refraction index  

(the method of real image). 

In contrast to this, we will use a method with a virtual image for the 
determination of negative refraction index of a nanomedium. The proposed method 
is suitable for various metamaterials [8, 9], including those with a subsystem of 
cylinders with negative refraction index [10]. Let us first consider a simple model 
of nanomaterial in the form of a system of nanocylinders immersed in vacuum. The 
nanocylinders with the axis oriented along the Z axis are arranged in a periodic 
two-dimensional array in the two-dimensional space [ ]YX ,=ρ

r
 with the lattice 

constant equal to a. The relative dielectric permittivity and magnetic permeability 
of such a system are changing in the space according to a periodic 
law )(ρεεµ

r
=≡ . In the vacuum 1=≡ µε , while inside cylinders 1−=≡ εµ . 

Let us assume that in a very thin boundary layer with thickness 0→δ  between 
the cylinder and the vacuum we have 0)( →ρε

r
. The polarization vector of the 

incident radiation is directed along the cylinder axis. 
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We assume that the dispersion law is the main characteristic of the 
transparent optical medium. By using the standard method for the determination of 
the dispersion law for two-dimensional photonic crystals [11] we obtain 

 )()/())()(()( 211 ρωρρερε
rrrr ΕcΕ =∇∇− −− , (1) 

where )(rΕ r
is the electric field strength, and ω is the frequency of the wave.  

The equation (1) can be transformed into  

 )()()()))(ln((
2
1)( 2222 ρΕρερΕρερΕω

rrrrr
−=



 ∇∇+∇− . (2) 

Since in the standard method of plane waves the matrix elements of the 
second term in the left-hand side of the equation (2) tend to zero 0→δ , one can 
keep only the first term in the left-hand side, and obtain 

 )(|)(|)()/( 22 ρΕρερΕω
rrr

−=∇−c . (3) 

The equation (3) for determination of eigenvalues of 2−ω is actually 
equivalent to a similar equation from ref. [11]. We see that the mathematical 
problem of finding the spectrum of electromagnetic oscillations for our system 
practically does not differ from a similar problem for a system of dielectric 
cylinders, but with substitution of )(rrε  by 1|)(| ≡rrε . The spectrum of such a 
system does not differ from the spectrum of vacuum with the refraction index  
neff  = nv = ±1 (which is equivalent to µeff  ≡ 1/εeff). However, the system impedance 
Zeff = μeff/εeff is different from the case of vacuum Zv≡1. 

It is known [12, 13] that a usual composite medium behaves like a 
homogeneous medium with a definite refraction index, but only for 

ak >>= 0/2πλ . However, the considered in this paper system will behave like a 
homogeneous medium with a definite refraction index up to values of λ ~ a. The 
reason for this phenomenon was specified in ref. [14]. Each of transparent 
cylinders scatters the plane wave, mainly in the direction parallel to the direction of 
incident wave propagation [14] (Fig. 2). It can be argued that the inclusions from a 
conventional optically transparent material behave like scatterers. However, the 
inclusions from a metamaterial behave like scatterer antipodes. 

The value of εeff for λ > a can be estimated from the 
formula )21( ceff −≅ε [13], where c is the share of material in the volume of the 

metamaterial. One can see from this formula that ,1, −≈effeff εµ  Zeff ≈ 1 for 1≈c  

(large radii of the cylinders 2/aR ≈ ). A simple case of vacuum  ( 1=≡ effeff µε , 
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Zeff = 1) is obtained with decreasing the radius of cylinders ( 0→R ), while a case 
with ∞→=→ effeffeff εµε /1,0 , |Zeff|→∞ is obtained for 2/1→c . 

 
Fig. 2 – The scattering indicatrix of various types of transparent cylinders for the wavelength of 

λ = 4R. 1 is for a usual transparent material with ε = 10,  
and 2 is for a metamaterial with ε = µ = –1. 

Similar results with minor differences are obtained for the case when the 
polarization vector of the incident radiation is perpendicular to the cylinders axis. 
The larger is the radiation wavelength as compared to the lattice constant, the more 
applicable are the above mentioned conclusions. 

3. DESCRIPTION OF THE METHOD ON THE EXAMPLE OF A SIMPLE MODEL  
OF OPTICAL NANOMEDIUM 

The method is based on determination of parameters of the virtual image 
occurring at the incidence of a light beam on a plate of optically transparent 
material with parallel surfaces and refraction index n. The reflected ray shifts to 
different directions depending on the sign of the refraction index (Fig. 3). The 
observed virtual image of the light source also shifts in different directions relative 
to the mirror image at the interface medium/vacuum. 
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Fig. 3 – The reflected ray shifts to different directions depending on the sign of the refraction index. 

The observed virtual image of the light source also shifts in different directions.  
The ray shift is actually an analog of the Goos-Hänchen shift, but for our case. 

We will assume in our further calculations that the plate with parallel 
surfaces is located at an ideally reflecting surface (Fig. 4). Practically any substrate 
with permittivity ε >> 1 satisfies this condition, since we will further deal with 
strongly etched samples with a share of material in the volume of the metamaterial 
of the order of several percents [15]. 

 
Fig. 4 – The phenomenon of refraction/reflection of the incident radiation for the case of a plate  

with parallel surfaces with εeff, µeff located at an ideally reflecting surface. 
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In the case of the electric field perpendicular to the plane of incidence of the 
ray we obtain [12] 

 ( )iSexp01 ΕΕ = , (4) 

where 01,ΕΕ are the amplitudes of the reflected and incident waves, d is the 
thickness of the plate. 

 









−= )(ctgarctg2 2

0

2 dk
k

kS x
xeff

x

µ
, (5) 

where 22
00 yx kkk −= ,  22

02 yeffeffx kkk −= µε . 

The formula for the shift of the ray after passing through the plate is  

 )( ykS ∂∂=δ , (6) 

For the case of εeff  = µeff  = ±1 we have 

 
22

0

2

yeff

y

kk

dk

−
=
µ

δ , (7) 

from which it follows that ∞→||δ  when 0kky → , i.e. for large angles of 
incidence. 

Further we will discuss the procedures for testing nanoplates. We will use a 
directional radiation source with an aperture ensuring obtaining a limited area of 
the planar wavefront near the sample surface, which will preserve this property at a 
distance L greater than the thickness of the layer d. Let us name it quasi-plane 
wavefront. We will further use in our calculations a light source radiating in the 
direction of the angle 4/0 πθ = . The wave field is described by the formula  

 ∑
−=

+−=
M

Ml
l kHil )())2/(exp(),( )1(

0 ρπθθθρΕ , (8) 

where )1(
lH  is the Hankel function. A wave beam with 

)()4/exp(/22),( 0θθδπρπθρΕ
ρ

−−→
∞→

i  is obtained at М→∞. 

This type of two-dimensional diffractionless wave field (self-reconstructing 
light beam) is analogous to Bessel beams [16]. The radiation aperture is ∆θ ≈ 1/M 
in the case of a finite М  >> 1. If the condition M ≈ kR/π (R is the distance from the 
emitter to the center of the plate) is satisfied for a wave-region of the radiation, 
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then the width of the beam in this region satisfies the condition of R∆θ > λ and, at 
the same time, R  >>  λ. The length of the used region of the beam L is smaller than 
R, but it should satisfy the condition of L >> d. The parameters are chosen so that 
M=102 >> 1, d > λ and the source is moved to a distance of R = 50 λ  >> d, λ. 

A coefficient is introduced to assess the degree of perfection of the wave  

 [ ] [ ] ,)()(2)()()()()(
1

000
*

0
−∗∗ ⋅+= rHrHrHrHrHrHrK

rrrrrr
 (9) 

where HH
rr

,0 are the intensities of magnetic fields of the plane right-hand  wave and 
the quasi-plane wave, respectively, for which the wave vectors and the electric field 
intensities coincide; r is the distance from the center of the beam to the source. 

The value of K is an indicative of the difference of the quasi-plane wave 
from the ideally planar right-hand wave in the vacuum. If K = 1 and the intensity I 
in the center of the beam remains constant at the distance L, then these waves can 
be considered as practically indistinguishable at this distance (Fig. 5). Otherwise, 
there is a significant part of radiation in the wave which behaves like a left-hand 
wave when it is incident at the plane surface boundary. The radiation is diffracted 
to an opposite diffraction angle as compared to the expected one, which can 
completely distort the measurement results by using a quasi-plane wave. 

 
Fig. 5 – (a) Wave field of the radiation source near the sample surface (M = 100). The radiation beam 
ensures obtaining a quasi-plane wave front with a limited area. The beam length L is finite, but it is 
larger that the plate thickness and the wavelength; b) the dependence of the coefficient K (curve 1) 

and the intensity log(I) in the center of the beam (curve 2) on the normalized distance (2r/λ) from the 
source. The arrow indicates the region where the radiation beam can be considered to be quasi-plane. 

Let us first consider a simple model of the matter as a perfectly 
homogeneous material with known parameters, and construct the wave field 
Real(E(ρ)) near the nanosamples with an incident quasi-plane wave (Fig. 6). The 
formula (4) and the Matlab fft and ifft operators are used. The incident wave is not 
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taken into consideration when the image of the wave field is constructed, since it 
will disturb the observation of main regularities of the investigated phenomenon. 
At the same time, the arrows on drawings indicate the trajectories of two rays (the 
incident ray and the ray reflected from the center of the rear surface of the 
nanoplate). 

 
Fig. 6 – The wave field Real(E(ρ)) near the nanosamples with an incident quasi-plane wave with 

wavelength λ = 0.4d for: (a) a metamaterial with neff  = –1, Zeff = 1; (b) a metamaterial with neff  = –1, 
Zeff  = 40; (c) a metamaterial with neff = 1, Zeff  = 6; (d) a usual transparent material with n = 3,  

Z = 0.11. 

The drawings in Fig. 6 are easily and simply interpreted. Fig. 6a illustrates 
the shift of a single beam for a medium with the refraction index neff = –1. There 
are no reflections from the material surface, and the optical impedance of the 
nanomaterial is Zeff = 1. The beam is shifted to the left. Fig. 6b illustrates the shift 
of the beam for a medium with the refraction index neff = –1 and the optical 
impedance of the nanomaterial |Zeff| >> 1. The first beam is the ray reflected from 
the surface of the nanomaterial, since Zeff ≠ 1. Other rays manifest theirselfs after 
reflections from the perfectly reflecting surface, and/or from the surface of the 
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nanomaterial. The shift of the beam for a medium with the refraction index n = 1 
and the optical impedance of the nanomaterial |Zeff| >> 1 is shown in Fig. 6c. The 
first weak beam is the ray reflected from the surface of the nanomaterial, since  
Zeff ≠ 1. Another ray (shifted to the right) emerges after reflection from the 
perfectly reflecting surface. Figure 6d shows the shift of the beam for a medium 
with the refraction index n = 3.5 and the optical impedance Z = 0.11. The first 
weak beam is the ray reflected from the surface of the nanomaterial. Another ray 
emerges after reflection from the perfectly reflecting surface. 

Therefore, one can argue that the radiation source and the proposed method 
are consistent with the considered problem. 

Similar results with minor differences are obtained for the case when the 
polarization vector of the incident radiation is perpendicular to the cylinders axis. 
The larger is the radiation wavelength as compared to the lattice constant, the more 
applicable are the above mentioned conclusions. 

4. A NANOMEDIUM IN A REALISTIC MODEL 

Further we consider a case of nanosample testing in the frame of a more 
complex and realistic model for the matter of the plate. All the used metamaterials 
represent systems from individual elements with different properties. The proposed 
method allows a detailed taking into consideration of the phenomenon of radiation 
scattering on individual elements of the medium. The metamaterial is modeled as a 
plate consisting of a system of different nanocylinders with known refraction 
indexes immersed in the vacuum. The cylinders are arranged in a trigonal lattice. A 
multiple scattering approach is used for calculations [17]. Near the jth cylinder the 
electromagnetic field can be represented as  

 [ ] )exp()()()()()( 0
)1(

0 mikHjBkJjE j

l

lm
jmmmm ρρ θρραρ ∑

−=

+=
r , (10) 

where ),( jjjj ρρρρ θρρρρ =−=
rrr

. 

The relationship between the )( jmα and )( jBm coefficients is given by 

 )(/)()( jjBjD mmm α= , (11) 

where )( jDm  appears from solving the problem of a single cylinder. 
There is a system of equations for the self-consistent solution for all the 

cylinders 

  ∑∑
≠

−

+∞

−∞=

+−+=
ij

ijmlij
l

mlmmm kHmliiDjBiDiB )()))((exp()()(~)()(~
0

)1( ρπθα ,  (12) 
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where ),( ijijijij θρρρρ =−=
rrr

. 
A problem of calculating the distribution of wave fields in the space around 

the system of cylinders arises after solving the equations. A simple technique is 
used. A cylinder with an extremely small radius, which practically does not scatter 
the incident radiation, is inserted at the point in space where the field amplitude has 
to be found. Then, the field amplitude is determined from the perturbation theory, 
and it is proportional to  

 ∑∑
≠

∞

=

+−=
ij

jilji
l

l kHiljBiW )())(exp()(~)(~
0

)1(

0
0 ρπθ . (13) 

The nanoplate is placed on an infinitely conductive substrate, which serves 
at the same time as a symmetry plane for all the system. Therefore, instead of the 
system (13) we have  
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where ρρ
rr

≡+ )( ,  yixi yx

rvr
+−=−)(ρ , and, for instance, 

 ),( )()()()()( +−+−+−+− =−= ijijijij θρρρρ rrr
.  

These formulas allows one to construct the wave field Real(E(ρ)) near the 
nanosamples upon the incidence of a quasi-plane wave.  

Figure 7 is simply interpreted when compared with the simple model applied 
in Fig. 6. The similarity with the simple model is more pronounced with increasing 
the radiation wavelength. Figure 7a is similar to Fig. 6a, but with a more realistic 
model of the finite size of the system. The larger is the wavelength, the better is the 
similarity. Figure 7b is similar to Fig. 6b. The first beam is the ray reflected from 
the nanomaterial surface (the optical impedance of the nanomaterial |Z| >> 1).  
Another ray emerges after reflection from the ideally reflecting surface. A shift to 
the left is observed, similarly to a medium with refraction index n = –1. In Fig. 7c, 
which corresponds to cylinders from a material with refraction index n = 3.2  
(ε = 10) and the impedance Z = 0.1, a ray reflected exactly from the place of 
entrance into the nanomaterial is observed. In contrast to Fig. 6d, the refracted ray 
is absent, since the medium is not homogeneous. The coherent beam in the medium 
is attenuated, and is quickly scattered in all the directions. Fig. 7d corresponds to a 
medium composed of two types of cylinders: 75% of them have the refraction 
index n = 3.2 (the optical impedance of the nanomaterial is |Z| < 1), and 25% of 
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them have the refraction index n = – 1 (the optical impedance of the nanomaterial 
is Zeff = 1). A partial homogenization of the material occurs in this case. The 
reflected ray is shifted from the place of entrance into the plate. It means that it was 
refracted, it entered into the material, and it was reflected from the mirror-like 
surface. At the same time, it was partially scattered.  

 
Fig. 7 – The wave field Real(E(ρ)) near the nanosamples with an incident quasi-plane wave for:  
(a) cylinders from a metamaterial with µeff = εeff = –1, the radius R = 0.5a, the wavelength λ = 2a;  
(b) cylinders from a metamaterial with µeff = εeff = –1, the radius R = 0.4a, the wavelength λ = 4a;  

(c) cylinders from a usual transparent material with ε = 10, the radius R = 0.5a, the wavelength λ = 4a;  
(d) cylinders with radius R = 0.5a are from two types of materials: 25% are from a metamaterial with 

µeff = εeff = –1 and 75% are from a usual transparent material with ε = 10, the wavelength λ = 4a. 

Similarly to Fig. 7, Fig. 8 illustrates the wave field for a medium composed 
of two types of cylinders, but with an inverse proportion of the constituents. One 
type of cylinders (25% of them) are from a material with refraction index n = 3.2 
(the optical impedance of the nanomaterial is Z = 0.1). Another type of cylinders 
(75% of them) are from a metamaterial with refraction index neff = –1 (the optical 
impedance of the nanomaterial is Z = 1). A partial dehomogenization of the 
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metamaterial occurs in this case, i.e. it starts to scatter that part of radiation which 
shifted the ray to the left in Fig. 7b.The ray refracted on the surface of nanoplate is 
scattered inside the medium. The phenomenon of refraction in a left-hand medium 
occurs via “trapping” [18], which is sensitive to scattering. This prevents the 
manifestation of the phenomenon of ray shifting (Fig. 7b). The scattering is 
weakned in Fig. 8b, which leads to the appearance of several weak scattered rays.  

 
Fig. 8 – The wave field Real(E(ρ)) near the nanosamples with an incident quasi-plane wave with 
wavelength λ = 4a for a medium composed of two types of cylinders: one type of cylinders with 

radius R1 (25% of them) are from a transparent material with ε = 10, while another type of cylinders 
with radius R2 (75% of them) are from a metamaterial with µeff = εeff = –1. The radii of cylinders are as 

follows: a) R1 = R2 = 0.4a; b) R1 = 0.25a, R2 = 0.5a. 

If the scattering is reduced almost to zero as in the case illustrated in Fig. 9, 
then one of the weak scattered rays resembles the shifted ray from Fig. 7b. 

 
Fig. 9 – The wave field Real(E(ρ)) near the nanosamples with an incident quasi-plane wave  

with wavelength λ = 4a for a medium with 25% of empty space and 75% filled  
with cylinders of radius R = 0.5a from a metamaterial with µeff = εeff = –1. 
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5. CONCLUSIONS 

A method is proposed for determination of parameters of media with 
negative refraction index. The method can be applied for both macroscopic and 
nanometric samples. A precise control of parameters of the radiation source is 
needed for using this method in the case of nanometric samples. One can judge 
about the optical parameters of the nanomedium by investigating the behavior of 
the reflected ray (the direction of propagation and the shifting of the reflected ray). 
When designing a metamaterial medium with negative refraction index, one needs 
to combine a scattering matrix from a material with usual refraction index with 
inclusion of a material with negative refraction index. With increasing the 
concentration of the inclusions, the scattering medium is gradually homogenized, it 
having a positive refraction index. However, the scattering is reduced to zero with 
a further increase of the inclusions concentration, and the medium acquires a 
negative refractive index.  
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