Post-spinel transformations and equation of state in ZnGa₂O₄: Determination at high-pressure by in situ x-ray diffraction

D. Errandonea^{1,*}, Ravhi S. Kumar², F. J. Manjón³, V. V. Ursaki⁴, and E. V. Rusu⁴

¹MALTA Consolider Team, Departamento de Física Aplicada-ICMUV, Fundación General de la Universitad de Valencia, Edificio de Investigación, c/Dr. Moliner 50, 46100 Burjassot (Valencia), Spain ²High Pressure Science and Engineering Center, Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4002, USA

³MALTA Consolider Team, Departamento de Física Aplicada-IDF, Universitat Politècnica de València, Cno. de Vera s/n, 46022 València, Spain

⁴Institute of Applied Physics, Academy of Sciences of Moldova, 2028 Chisinau, Moldova

Abstract: Room temperature angle-dispersive x-ray diffraction measurements on spinel ZnGa₂O₄ up to 56 GPa show evidence of two structural phase transformations. At 31.2 GPa, ZnGa₂O₄ undergoes a transition from the cubic spinel structure to a tetragonal spinel structure similar to that of ZnMn₂O₄. At 55 GPa, a second transition to the orthorhombic marokite structure (CaMn₂O₄-type) takes place. The equation of state of cubic spinel ZnGa₂O₄ is determined: $V_0 = 580.1(9)$ Å³, B₀ = 233(8) GPa, B₀'= 8.3(4), and B₀''= -0.1145 GPa⁻¹ (implied value); showing that ZnGa₂O₄ is one of the less compressible spinels studied to date. For the tetragonal structure an equation of state is also determined: $V_0 = 257.8(9)$ Å³, B₀ = 257(11) GPa, B₀'= 7.5(6), and B₀''= -0.0764 GPa⁻¹ (implied value). The reported structural sequence coincides with that found in NiMn₂O₄ and MgMn₂O₄.

PACS numbers: 62.50.+p, 61.50.Ks, 64.70.Kg

^{*} Corresponding author, Email: daniel.errandonea@uv.es, Fax: (34) 96 3543146, Tel.: (34) 96 354 4475

I. Introduction

Cubic oxide spinel AM₂O₄ compounds (A: bivalent cation and M: trivalent cation) occur in many geological settings of the Earth's crust and mantle, as well as in lunar rocks and meteorites. The study of their high-pressure structural properties is important for improving the understanding of the constituents of the Earth. Highpressure studies have been performed in MgM_2O_4 spinels (e.g. $MgAl_2O_4$) revealing that upon compression they may adopt orthorhombic CaFe₂O₄-, CaMn₂O₄-, or CaTi₂O₄-type structures [1]. However, the structure and properties of post-spinel phases is presently still under debate. On top of MgM₂O₄ spinels, the high-pressure properties of ZnM₂O₄ cubic spinels (e.g. ZnAl₂O₄) have been studied too. Among them, ZnAl₂O₄ [2] and $ZnFe_2O_4$ [3] have been experimentally investigated. The first one remains stable up to 43 GPa in the cubic spinel structure but the second one transforms to either a $CaFe_2O_4$ or a CaTi₂O₄-type structure beyond 24 GPa. In addition to these facts, in other compounds like AMn₂O₄ spinels, cubic-to-tetragonal transitions have been reported to occur at pressures as low as 12 GPa [4]. In contrast with the materials above mentioned, the high-pressure structural stability of AGa₂O₄ spinels has not been studied yet. In order to shed more light on the understanding of the high-pressure properties of AM₂O₄ cubic spinels, we report a study of the high-pressure structural properties of zinc gallate (ZnGa₂O₄) up to 56 GPa. The present research work contributes to achieve a fuller understanding of how cation replacement affects the high-pressure behavior of oxide spinels.

II. Experimental details

 $ZnGa_2O_4$ powders were synthesized by a solid state reaction at high temperature by mixing appropriate quantities of ZnO and Ga_2O_3 precursors and firing at 1100°C for 24 h [5]. Chemical and structural analyses have shown the stoichiometric composition