Definition and example of *n*-ary Moufang loop

Leonid Ursu

Technical University of Moldova, Chişinău, Republic of Moldova e-mail: matematica@mail.utm.md

Summary. In this work necessary and sufficient conditions that isotope of *n*-IP-loop ($n \in N^*$, n > 3) is also *n*-IP-loop are proved. Definition of *n*-ary Moufang loop is given, example of such loop is constructed.

Keywords: n-IP-quasigroup, n-IP-loop, Moufang loop, isotopy, LP-isotopy.

Main concepts and definitions. Quasigroup Q(A) of arity $n, n \ge 2$, is called an *n*-*IP*quasigroup if there exist permutations $\nu_{ij}, i, j \in \overline{1, n}$ of the set Q such that the following identities are true:

$$A(\{\nu_{ij}x_j\}_{j=1}^{i-1}, A(x_1^n), \{\nu_{ij}x_j\}_{j=i+1}^n) = x_i$$

for all $x_1^n \in Q^n$, where $\nu_{ii} = \nu_{in+1} = \varepsilon$, ε denotes identity permutation of the set Q [1]. The matrix

	ε	ν_{12}	ν_{13}	• • •	ν_{1n}	ε
$\left[\nu_{ij}\right] =$	ν_{21}	ε	ν_{23}	• • •	ν_{2n}	ε
		••••	• • • • •	••••		• •
	ν_{31}	ν_{32}	ε		ε	ε

is called an inversion matrix for an *n*-*IP*-quasigroup, the permutations $\nu_{i,j}$ are called inversion permutations. An element *e* is called a unit of *n*-ary operation Q(), if the following equality is true $\binom{i-1}{e}, x, \stackrel{n-i}{e} = x$ for all $x \in Q$ and $i \in \overline{1, n}$. *n*-Ary quasigroup with unit element is called an *n*-ary loop [1].

Permutations I_{ij} of the set Q are defined by equities

$$\binom{i-1}{e}, x, \stackrel{j-i-1}{e}, I_{ij}x, \stackrel{n-j}{e} = e$$

for all $x \in Q$ and $i, j \in \overline{1, n}$.

N-ary quasigroup (Q, B) is isotopic to n-ary quasigroup (Q, A) (the number n is the same in both quasigroups) if there exist a tuple of permutations $T = (\alpha_1^{n+1})$ of the set Q such that

$$B(x_1^n) = \alpha_{n+1}^{-1} A(\alpha_1 x_1, \dots, \alpha_n x_n)$$

In this case we write $B = A^T$ [1]. Isotope of the form $T = (\alpha_1^n, \varepsilon)$ is called main isotope.

As usual $\overline{a} = a_1^n$. Main isotope is called LP-isotope, if $\alpha_i = L_i^{-1}(\overline{a})$ for all $i \in \overline{1, n}$, where $L_i(\overline{a})x = A(a_1^{i-1}, x, a_{i+1}^n)$.

LP-isotope of a quasigroup (Q, A) is a loop with unit $f = A(a_1^n)$ [1]. If A = B, then the tuple T is called autotopy of n-ary quasigroup A.

Main results

Theorem 1. LP-isotope $B = A^{(L_1^{-1}(\overline{a}), L_2^{-1}(\overline{a}), \dots, L_n^{-1}(\overline{a}), \varepsilon)}$ of n-IP-loop A with unit e is an n-IP-loop if and only if

$$T_{i} = (\{I_{ij}^{e}L_{j}^{-1}(\overline{a})I_{ij}^{f}L_{j}(\overline{a})\}_{j=1}^{i-1}, L_{i}(\overline{a}), \{I_{ij}^{e}L_{j}^{-1}(\overline{a})I_{ij}^{f}L_{j}(\overline{a})\}_{j=i+1}^{n}, L_{i}^{-1}(\overline{a})),$$

 $i \in \overline{1,n}$, are autotopies of n-IP-loop (Q, A) for any fixed element $a \in Q$, where $[I_{ij}^e]$ is inversion matrix for (Q, A), $[I_{ij}^f]$ is inversion matrix for (Q, B) [2].

If n = 3, then we obtain results from [3], if n = 2, then autotopies T_i are transformed into the well known Moufang identities.

Definition 1. *n*-Loop (Q, A) (n > 2) is called *n*-ary Moufang loop, if any its LP-isotope is an *n*-IP-loop.

In contrast to the binary case, for n > 2 a Moufang loop is not an IP-loop [1]. If (Q, A) is an *n*-IP-loop, then we call it *n*-IP Moufang loop.

Example 4. Let $A(x_1^4) = (x_1^4) = x_1 \cdot x_2 \cdot x_3 \cdot x_4$ be a 4-IP-quasigroup which is defined over a binary Abelian group (Q, \cdot) .

It is possible to check that (Q, A) is a 4-IP-loop with unit e that coincides with the unit of the group (Q, \cdot) and with invertible matrix $[I_{ij}^e]$. We suppose that $I_{ij}^e L_j^{-1}(\overline{a}) I_{ij}^f L_j(\overline{a}) = \varphi_{ij}(\overline{a})$.

Then autotopy T_1 from Theorem 1 is transformed into the following identity:

$$(((x_1, a_2, a_3, a_4), x_2, x_3, x_4), a_2, a_3, a_4) = (x_1, \varphi_{12}(\overline{a})x_2, \varphi_{13}(\overline{a})x_3, \varphi_{14}(\overline{a})x_4).$$

This identity is true if we take $\varphi_{12}(\overline{a})x = a_2 \cdot a_3 \cdot a_4 \cdot x$, $\varphi_{13}(\overline{a})x = x$, $\varphi_{14}(\overline{a})x = x \cdot a_2 \cdot a_3 \cdot a_4$. Similarly we see that permutations T_2, T_3, T_4 are autotopies of loop (Q, A). Therefore (Q, A) is

a symmetric 4-IP-Moufang-loop.

In the similar way it is possible to construct an n-IP-Moufang-loop of any arity n.

Bibliography

- [1] V.D. Belousov. *n-Ary Quasigroups*, Stiintsa, Kishinev, (1971).
- [2] L.A. Ursu. About one special inversion matrix of non-symmetric n-IP-loop. Proceedings of the 4-th Conference of Mathematical Society of the Republic of Moldova, Chişinău, June 28-July 2, 2017, p. 165-168.
- [3] L.A. Ursu. Definition and example of ternary Moufang loop. International Conference on Mathematics, Informatics and Information Technologies dedicated to the Illustrious Scientist Valentin Belousov, April 19 - April 21, 2018, Bălți, Communications, 2018, p. 96-97.

108