Minimal generating set and properties of commutator of Sylow subgroups of alternating and symmetric groups

Ruslan Skuratovskii

Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine e-mail: ruslan@imath.kiev.ua

Summary. Given a permutational wreath product sequence of cyclic groups [12, 6] of order 2 we research a commutator width of such groups and some properties of its commutator subgroup. Commutator width of Sylow 2-subgroups of alternating group A_{2^k} , permutation group S_{2^k} and $C_p \wr B$ were founded. The result of research was extended on subgroups $(Syl_2A_{2^k})', p > 2$. The paper presents a construction of commutator subgroup of Sylow 2-subgroups of symmetric and alternating groups. Also minimal generic sets of Sylow 2-subgroups of A_{2^k} were founded. Elements presentation of $(Syl_2A_{2^k})', (Syl_2S_{2^k})'$ was investigated. We prove that the commutator width [14] of an arbitrary element of a discrete wreath product of cyclic groups $C_{p_i}, p_i \in \mathbb{N}$ is 1.

Let G be a group. The commutator width of G, cw(G) is defined to be the least integer n, such

that every element of G' is a product of at most n commutators if such an integer exists, and $cw(G) = \infty$ otherwise. The first example of a finite perfect group with cw(G) > 1 was given by Isaacs in [9].

A form of commutators of wreath product $A \wr B$ was briefly considered in [7]. For more deep description of this form we take into account the commutator width (cw(G)) which was presented in work of Muranov [14]. This form of commutators of wreath product was used by us for the research of $cw(Syl_2A_{2^k})$, $cw(Syl_2S_{2^k})$ and $cw(C_p \wr B)$. As well known, the first example of a group G with cw(G) > 1 was given by Fite [4]. We deduce an estimation for commutator width of wreath product $B \wr C_p$ of groups C_p and an arbitrary group B taking into the consideration a cw(B) of passive group B.

A research of commutator-group serves to decision of inclusion problem [5] for elements of $Syl_2A_{2^k}$ in its derived subgroup $(Syl_2A_{2^k})'$.

Results. We consider $B \wr (C_p, X)$, where $X = \{1, ..., p\}$, and $B' = \{[f,g] \mid f,g \in B\}, p \ge 1$. If we fix some indexing $\{x_1, x_2, ..., x_m\}$ of set the X, then an element $h \in H^X$ can be written as $(h_1, ..., h_m)$ for $h_i \in H$.

The set X^* is naturally a vertex set of a regular rooted tree, i.e. a connected graph without cycles and a designated vertex v_0 called the root, in which two words are connected by an edge if and only if they are of form v and vx, where $v \in X^*$, $x \in X$. The set $X^n \subset X^*$ is called the *n*-th level of the tree X^* and $X^0 = \{v_0\}$. We denote by $v_{j,i}$ the vertex of X^j , which has the number *i*. Note that the unique vertex $v_{k,i}$ corresponds to the unique word v in alphabet X. For every automorphism $g \in AutX^*$ and every word $v \in X^*$ define the section (state) $g_{(v)} \in AutX^*$ of g at v by the rule: $g_{(v)}(x) = y$ for $x, y \in X^*$ if and only if g(vx) = g(v)y. The subtree of X^* induced by the set of vertices $\bigcup_{i=0}^k X^i$ is denoted by $g_{(v)}|_{X^{[i]}}$. A restriction of an automorphism $g \in AutX^*$ to the subtree $X^{[l]}$ is denoted by $g_{(v)}|_{X^{[l]}}$.

The set X^* is naturally a vertex set of a regular rooted tree, i.e. a connected graph without cycles and a designated vertex v_0 called the root, in which two words are connected by an edge if and only if they are of form v and vx, where $v \in X^*$, $x \in X$. The set $X^n \subset X^*$ is called the *n*-th level of the tree X^* and $X^0 = \{v_0\}$. We denote by $v_{j,i}$ the vertex of X^j , which has the number *i*.

The commutator length of an element g of the derived subgroup of a group G is denoted clG(g), is the minimal n such that there exist elements $x_1, ..., x_n, y_1, ..., y_n$ in G such that $g = [x_1, y_1]...[x_n, y_n]$. The commutator length of the identity element is 0. The commutator width of a group G, denoted cw(G), is the maximum of the commutator lengths of the elements of its derived subgroup [G, G].

Let us make some notations. The commutator of two group elements a and b, denoted

$$[a, b] = aba^{-1}b^{-1},$$

conjugation by an element b as

$$a^b = bab^{-1},$$

 $\sigma = (1, 2, \dots, p)$. Also $G_k \simeq Syl_2A_{2^k}$, $B_k = \ell_{i=1}^k C_2$. The structure of G_k was investigated in [6]. For this research we can regard G_k and B_k as recursively constructed i.e. $B_1 = C_2$, $B_k = B_{k-1} \wr C_2$ for k > 1, $G_1 = \langle e \rangle$, $G_k = \{(g_1, g_2)\pi \in B_k \mid g_1g_2 \in G_{k-1}\}$ for k > 1.

The following Lemma follows from the corollary 4.9 of the Meldrum's book [7].

Lemma 1. An element of form $(r_1, \ldots, r_{p-1}, r_p) \in W' = (B \wr C_p)'$ iff product of all r_i (in any order) belongs to B', where B is an arbitrary group.

Proof. Analogously to the Corollary 4.9 of the Meldrum's book [7] we can deduce new presentation of commutators in form of wreath recursion

$$w = (r_1, r_2, \dots, r_{p-1}, r_p),$$

where $r_i \in B$.

Lemma 2. For any group B and integer $p \ge 2$, $p \in \mathbb{N}$ if $w \in (B \wr C_p)'$ then w can be represented as the following wreath recursion

$$w = (r_1, r_2, \dots, r_{p-1}, \prod_{j=1}^k [f_j, g_j]),$$

where $r_1, \ldots, r_{p-1}, f_j, g_j \in B$, and $k \leq cw(B)$.

Lemma 3. An element $(g_1, g_2)\sigma^i \in G'_k$ iff $g_1, g_2 \in G_{k-1}$ and $g_1g_2 \in B'_{k-1}$.

Lemma 4. For any group B and integer $p \ge 2$ inequality

$$cw(B \wr C_p) \le \max(1, cw(B))$$

holds.

Corollary 1. If $W = C_{p_k} \wr \ldots \wr C_{p_1}$ then for $k \ge 2 \ cw(W) = 1$.

Corollary 2. Commutator width $cw(Syl_p(S_{p^k})) = 1$ for prime p and k > 1 and commutator width $cw(Syl_p(A_{p^k})) = 1$ for prime p > 2 and k > 1.

Theorem 1. Elements of $Syl_2S'_{2^k}$ have the following form $Syl_2S'_{2^k} = \{[f, l] \mid f \in B_k, l \in G_k\} = \{[l, f] \mid f \in B_k, l \in G_k\}.$

For the group G''_k we denote by s_{ij} vertex permutation of automorphism in v_{ij} .

Lemma 5. The group G''_k has equal permutation in vertices of X^2 , viz $s_{21} = s_{22} = s_{23} = s_{24}$.

Theorem 2. Commutator width of the group $Syl_2A_{2^k}$ equal to 1 for $k \ge 2$.

Proposition 1. The subgroup $(syl_2A_{2^k})'$ has a minimal generating set of 2k-3 generators.

Conclusion. The commutator width of Sylow 2-subgroups of alternating group A_{2^k} , permutation group S_{2^k} and Sylow *p*-subgroups of $Syl_2A_p^k$ $(Syl_2S_p^k)$ is equal to 1. Commutator width of permutational wreath product $B \wr C_n$, were *B* is an arbitrary group, was researched.

Bibliography

- R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Sao Paulo Journal of Mathematical Sciences. (2018), no. 1, pp. 1-19. Source: https://link.springer.com/article/10.1007/s40863-018-0085-0.
- [2] R. Skuratovskii, Generators and relations for Sylows p-subgroup of group S_n .(in ukranian) Naukovi Visti KPI. 2013, N. 4 pp. 94-105.
- [3] Alexey Muranov, Finitely generated infinite simple groups of infinite commutator width. arXiv:math/0608688v4 [math.GR] 12 Sep 2009.
- [4] W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc, 3 (1902), pp. 331-353.

- [5] Roger C. Lyndon Paul E. Schupp, *Combinatorial group theory*. Springer-Verlag Berlin Heidelberg New York 1977. 447 p.
- [6] R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Source: https://arxiv.org/abs/1702.05784v2
- [7] J.D.P. Meldrum, Wreath Products of Groups and Semigroups. Pitman Monographs and Surveys in Pure and Applied Mathematic English. 1st Edition. Jun (1995). 425 p.
- [8] Nikolay Nikolov, On the commutator width of perfect groups. Bull. London Math. Soc. 36 (2004)
 p. 30 V36.
- [9] I. M. Isaacs, QCommutators and the commutator subgroup R, Amer. Math. Monthly 84 (1977) P. 720 V722.
- [10] I.V. Bondarenko, I.O. Samoilovych, On finite generation of self-similar groups of finite type. Int. J. Algebra Comput. February (2013), Volume 23, Issue 01, pp. 69-77
- [11] R. Skuratovskii, Corepresentation of a Sylow p-subgroup of a group S_n . Cybernetics and systems analysis, (2009), N. 1, pp. 27-41.
- [12] R. Skuratovskii, Generators and relations for sylows o-subgroup of group S_n . Naukovi Visti KPI. 4 (2013), pp. 94–105. (in Ukrainian)
- [13] R.V. Skuratovskii, Y.A. Drozd, Generators and relations for wreath products of groups. Ukr Math J. (2008), vol. 60. Issue 7, pp. 1168 V1171.
- [14] Alexey Muranov, Finitely generated infinite simple groups of infinite commutator width. arXiv:math/0608688v4 [math.GR] 12 Sep 2009.