Minimal generating set and properties of commutator of Sylow subgroups of alternating and symmetric groups

Ruslan Skuratovskii
Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine
e-mail: ruslan@imath.kiev.ua

Abstract

Summary. Given a permutational wreath product sequence of cyclic groups [12, 6] of order 2 we research a commutator width of such groups and some properties of its commutator subgroup. Commutator width of Sylow 2-subgroups of alternating group $A_{2^{k}}$, permutation group $S_{2^{k}}$ and C_{p} B were founded. The result of research was extended on subgroups $\left(S y l_{2} A_{2^{k}}\right)^{\prime}, p>2$. The paper presents a construction of commutator subgroup of Sylow 2-subgroups of symmetric and alternating groups. Also minimal generic sets of Sylow 2-subgroups of $A_{2^{k}}$ were founded. Elements presentation of $\left(S y l_{2} A_{2^{k}}\right)^{\prime},\left(S y l_{2} S_{2^{k}}\right)^{\prime}$ was investigated. We prove that the commutator width [14] of an arbitrary element of a discrete wreath product of cyclic groups $C_{p_{i}}, p_{i} \in \mathbb{N}$ is 1 . Let G be a group. The commutator width of $G, c w(G)$ is defined to be the least integer n, such

that every element of G^{\prime} is a product of at most n commutators if such an integer exists, and $c w(G)=\infty$ otherwise. The first example of a finite perfect group with $c w(G)>1$ was given by Isaacs in [9].
A form of commutators of wreath product $A<B$ was briefly considered in [7]. For more deep description of this form we take into account the commutator width $(c w(G))$ which was presented in work of Muranov [14]. This form of commutators of wreath product was used by us for the research of $c w\left(S y l_{2} A_{2^{k}}\right), c w\left(S y l_{2} S_{2^{k}}\right)$ and $c w\left(C_{p} \prec B\right)$. As well known, the first example of a group G with $c w(G)>1$ was given by Fite [4]. We deduce an estimation for commutator width of wreath product $B \imath C_{p}$ of groups C_{p} and an arbitrary group B taking into the consideration a $c w(B)$ of passive group B.
A research of commutator-group serves to decision of inclusion problem [5] for elements of $S y l_{2} A_{2^{k}}$ in its derived subgroup $\left(S y l_{2} A_{2^{k}}\right)^{\prime}$.
Results. We consider $B\}\left(C_{p}, X\right)$, where $X=\{1, . ., p\}$, and $B^{\prime}=\{[f, g] \mid f, g \in B\}, p \geq 1$. If we fix some indexing $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of set the X, then an element $h \in H^{X}$ can be written as $\left(h_{1}, \ldots, h_{m}\right)$ for $h_{i} \in H$.

The set X^{*} is naturally a vertex set of a regular rooted tree, i.e. a connected graph without cycles and a designated vertex v_{0} called the root, in which two words are connected by an edge if and only if they are of form v and $v x$, where $v \in X^{*}, x \in X$. The set $X^{n} \subset X^{*}$ is called the n-th level of the tree X^{*} and $X^{0}=\left\{v_{0}\right\}$. We denote by $v_{j, i}$ the vertex of X^{j}, which has the number i. Note that the unique vertex $v_{k, i}$ corresponds to the unique word v in alphabet X. For every automorphism $g \in A u t X^{*}$ and every word $v \in X^{*}$ define the section (state) $g_{(v)} \in A u t X^{*}$ of g at v by the rule: $g_{(v)}(x)=y$ for $x, y \in X^{*}$ if and only if $g(v x)=g(v) y$. The subtree of X^{*} induced by the set of vertices $\cup_{i=0}^{k} X^{i}$ is denoted by $X^{[k]}$. The restriction of the action of an automorphism $g \in A u t X^{*}$ to the subtree $X^{[l]}$ is denoted by $\left.g_{(v)}\right|_{X^{[l]}}$. A restriction $\left.g_{(v)}\right|_{X^{[1]}}$ is called the vertex permutation (v.p.) of g in a vertex v.

The set X^{*} is naturally a vertex set of a regular rooted tree, i.e. a connected graph without cycles and a designated vertex v_{0} called the root, in which two words are connected by an edge if and only if they are of form v and $v x$, where $v \in X^{*}, x \in X$. The set $X^{n} \subset X^{*}$ is called the n-th level of the tree X^{*} and $X^{0}=\left\{v_{0}\right\}$. We denote by $v_{j, i}$ the vertex of X^{j}, which has the number i.

The commutator length of an element g of the derived subgroup of a group G is denoted $\operatorname{clG}(g)$, is the minimal n such that there exist elements $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ in G such that $g=$ $\left[x_{1}, y_{1}\right] \ldots\left[x_{n}, y_{n}\right]$. The commutator length of the identity element is 0 . The commutator width of a group G, denoted $c w(G)$, is the maximum of the commutator lengths of the elements of its derived subgroup $[G, G]$.

Let us make some notations. The commutator of two group elements a and b, denoted

$$
[a, b]=a b a^{-1} b^{-1}
$$

conjugation by an element b as

$$
a^{b}=b a b^{-1}
$$

$\sigma=(1,2, \ldots, p)$. Also $G_{k} \simeq S y l_{2} A_{2^{k}}, B_{k}=l_{i=1}^{k} C_{2}$. The structure of G_{k} was investigated in [6]. For this research we can regard G_{k} and B_{k} as recursively constructed i.e. $B_{1}=C_{2}, B_{k}=B_{k-1}\left\langle C_{2}\right.$ for $k>1, G_{1}=\langle e\rangle, G_{k}=\left\{\left(g_{1}, g_{2}\right) \pi \in B_{k} \mid g_{1} g_{2} \in G_{k-1}\right\}$ for $k>1$.

The following Lemma follows from the corollary 4.9 of the Meldrum's book [7].
Lemma 1. An element of form $\left(r_{1}, \ldots, r_{p-1}, r_{p}\right) \in W^{\prime}=\left(B \backslash C_{p}\right)^{\prime}$ iff product of all r_{i} (in any order) belongs to B^{\prime}, where B is an arbitrary group.

Proof. Analogously to the Corollary 4.9 of the Meldrum's book [7] we can deduce new presentation of commutators in form of wreath recursion

$$
w=\left(r_{1}, r_{2}, \ldots, r_{p-1}, r_{p}\right),
$$

where $r_{i} \in B$.
Lemma 2. For any group B and integer $p \geq 2, p \in \mathbb{N}$ if $w \in\left(B \backslash C_{p}\right)^{\prime}$ then w can be represented as the following wreath recursion

$$
w=\left(r_{1}, r_{2}, \ldots, r_{p-1}, \prod_{j=1}^{k}\left[f_{j}, g_{j}\right]\right)
$$

where $r_{1}, \ldots, r_{p-1}, f_{j}, g_{j} \in B$, and $k \leq c w(B)$.
Lemma 3. An element $\left(g_{1}, g_{2}\right) \sigma^{i} \in G_{k}^{\prime}$ iff $g_{1}, g_{2} \in G_{k-1}$ and $g_{1} g_{2} \in B_{k-1}^{\prime}$.
Lemma 4. For any group B and integer $p \geq 2$ inequality

$$
c w\left(B \imath C_{p}\right) \leq \max (1, c w(B))
$$

holds.
Corollary 1. If $W=C_{p_{k}} \imath \ldots \prec C_{p_{1}}$ then for $k \geq 2 c w(W)=1$.
Corollary 2. Commutator width $c w\left(\operatorname{Syl}_{p}\left(S_{p^{k}}\right)\right)=1$ for prime p and $k>1$ and commutator width $\operatorname{cw}\left(\operatorname{Syl}_{p}\left(A_{p^{k}}\right)\right)=1$ for prime $p>2$ and $k>1$.
Theorem 1. Elements of Syl $l_{2} S_{2^{k}}^{\prime}$ have the following form $\operatorname{Syl}_{2} S_{2^{k}}^{\prime}=\left\{[f, l] \mid f \in B_{k}, l \in G_{k}\right\}=$ $\left\{[l, f] \mid f \in B_{k}, l \in G_{k}\right\}$.

For the group $G_{k}^{\prime \prime}$ we denote by $s_{i j}$ vertex permutation of automorphism in $v_{i j}$.
Lemma 5. The group $G_{k}^{\prime \prime}$ has equal permutation in vertices of X^{2}, viz $s_{21}=s_{22}=s_{23}=s_{24}$.
Theorem 2. Commutator width of the group Syl $_{2} A_{2^{k}}$ equal to 1 for $k \geq 2$.
Proposition 1. The subgroup $\left(\operatorname{syl}_{2} A_{2^{k}}\right)^{\prime}$ has a minimal generating set of $2 k-3$ generators.
Conclusion . The commutator width of Sylow 2-subgroups of alternating group $A_{2^{k}}$, permutation group $S_{2^{k}}$ and Sylow p-subgroups of $S y l_{2} A_{p}^{k}\left(S y l_{2} S_{p}^{k}\right)$ is equal to 1. Commutator width of permutational wreath product B 亿 C_{n}, were B is an arbitrary group, was researched.

Bibliography

[1] R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Sao Paulo Journal of Mathematical Sciences. (2018), no. 1, pp. 1-19. Source: https://link.springer.com/article/10.1007/s40863-018-0085-0.
[2] R. Skuratovskii, Generators and relations for Sylows p-subgroup of group S_{n}.(in ukranian) Naukovi Visti KPI. 2013, N. 4 pp. 94-105.
[3] Alexey Muranov, Finitely generated infinite simple groups of infinite commutator width. arXiv:math/0608688v4 [math.GR] 12 Sep 2009.
[4] W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc, 3 (1902), pp. 331-353.
[5] Roger C. Lyndon Paul E. Schupp, Combinatorial group theory. Springer-Verlag Berlin Heidelberg New York 1977. 447 p.
[6] R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Source: https://arxiv.org/abs/1702.05784v2
[7] J.D.P. Meldrum, Wreath Products of Groups and Semigroups. Pitman Monographs and Surveys in Pure and Applied Mathematic English. 1st Edition. Jun (1995). 425 p.
[8] Nikolay Nikolov, On the commutator width of perfect groups. Bull. London Math. Soc. 36 (2004) p. 30 V36.
[9] I. M. Isaacs, QCommutators and the commutator subgroup R, Amer. Math. Monthly 84 (1977) P. 720 V722.
[10] I.V. Bondarenko, I.O. Samoilovych, On finite generation of self-similar groups of finite type. Int. J. Algebra Comput. February (2013), Volume 23, Issue 01, pp. 69-77
[11] R. Skuratovskii, Corepresentation of a Sylow p-subgroup of a group S_{n}. Cybernetics and systems analysis, (2009), N. 1, pp. 27-41.
[12] R. Skuratovskii, Generators and relations for sylows o-subgroup of group S_{n}. Naukovi Visti KPI. 4 (2013), pp. 94-105. (in Ukrainian)
[13] R.V. Skuratovskii, Y.A. Drozd, Generators and relations for wreath products of groups. Ukr Math J. (2008), vol. 60. Issue 7, pp. 1168 V1171.
[14] Alexey Muranov, Finitely generated infinite simple groups of infinite commutator width. arXiv:math/0608688v4 [math.GR] 12 Sep 2009.

