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Consider the following implicational formulae:

A1 = (p ⊃ p),A2 = (((p ⊃ p) ⊃ p) ⊃ p) = ((A1 ⊃ p) ⊃ p), · · · ,
Ai+1 = ((Ai ⊃ p) ⊃ p), · · · , (i = 1, 2, 3, · · · )

Using these formulae (axioms), we may construct the following logics:

L1 =< A2i >,L2 =< (A2i ⊃ A2i+1) >,
L3 =< A2i−1 >,L4 =< (A2i−1 ⊃ A2i) >, i = 1, 2, 3, · · ·

viz. the logic L1 is generated by the axioms A2i, i = 1, 2, 3, ...; the process is analogous for logics
L2,L3,L4.
The rule of deduction for these logics is unique - modus ponens: A, (A ⊃ B) ` B (if the formulae
A and (A ⊃ B) ∈ to the given logic, then formula B also ∈ to this logic).
Let S be the lattice generated by the logics L1,L2, .L3,L4. The following results are obtained:

1. Lattice S is infinite.

2. If logics L1,L2, .L3,L4 possess a finite number of axioms (viz. i = 1, 2, 3, ..., n), then the
respective lattice S is finite.

3. For lattice S the problem of the equality of any two lattice elements is solvable.

4. If the rule of deduction - the substitution is added to the above logics, then statements 1)–3)
are also true. (The rule of deduction the substitution means: if formula A ∈ to the given
logic, then the result of the substitution in formula A of any implicational formula of the
variable p for the same variable p also ∈ to the same logic.)
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Firstly, a reminder that a lattice is a set S of elements; it is partially ordered, closed in relation
to two lattice operations: the reunion a + b and the intersection a · b of any two elements a and
b from set S. (The reunion a + b is the smallest element of the lattice containing both elements
a and b; the intersection a · b is the greatest element of the lattice contained in both elements a
and b. Obviously, a ≤ a + b, b ≤ a + b, a ≥ a · b, b ≥ a · b)
A lattice may also be defined thusly: the generating elements of the lattice are given. Other
elements, different from the generators, are obtained via the two lattice operations, applied to the
generators.
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Statement. Let a1, a2, a3, · · · ,, an be the lattice generators. And let T be any element (term)
of the lattice. The following takes place:

T ≥ a1 + a2 + · · ·+ ai−1 + ai+1 + · · ·+ an

or:
T ≥ ai, (i = 1, 2, 3, · · · , n).

The statement is proven through the method of mathematical induction in relation to the length of
element (term) T . (Elements of length 1 are, evidently, the lattice generators. Any other element
T of a length greater than 1 is presented as T = T1 + T2 or T = T1 · T2, where the lengths of T1

and T2 are less than the length of element T - this presentation is deployed within the application
of the method of mathematical induction.)
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It is demonstrated that there exist ternary Moufang loops that are different from ternary groups.
Let (K,+, ·, 1) be an associative ring (not necessary commutative) which has characteristic 3, i.e.,
x+ x+ x = 0 for all x ∈ K.
By K ′(·) we denote an abelian subgroup of the group K∗(·). Here K∗ = K\{0}. The map x→ s·x
for all x ∈ K is a permutation for any s ∈ K ′. Moreover, we require that s2 = 1 for all s ∈ K ′.
In particular case K = Z3 is a ring of residues modulo 3.
On the set Q = K ′ ×K = {< s, k > | s ∈ K ′, k ∈ K} we define the following ternary operation

A( < s1, x1 >,< s2, x2 >,< s3, x3 >) =< s1s2s3, s2x1 + s3x2 + s1x3 > (1)

for all s1, s2, s3 ∈ K ′, x1, x2, x3 ∈ K.
Algebra Q(A) with operation defined on the set Q = K ′ × K by the formula (1) is a ternary
non-commutative Moufang loop that is not a ternary group.
Example of ternary commutative Moufang loop that is not a ternary group is also constructed.
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On topological endomorphism rings with no more than two non-trivial
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Let L be the class of locally compact abelian groups. For X ∈ L, we denote by t(X) the
torsion subgroup of X and by E(X) the ring of continuous endomorphisms of X, taken with the
compact-open topology. If X is topologically torsion, then S(X) stands for the set of primes p
such that the corresponding topological p-primary component of X is non-zero. Given a positive
integer n, we set nX = {nx | x ∈ X} and X[n] = {x ∈ X | nx = 0}.


