On topological endomorphism rings with no more than two non-trivial closed ideals

Valeriu Popa
Institute of Mathematics and Computer Science, Moldova e-mail: vpopa@math.md

Let \mathcal{L} be the class of locally compact abelian groups. For $X \in \mathcal{L}$, we denote by $t(X)$ the torsion subgroup of X and by $E(X)$ the ring of continuous endomorphisms of X, taken with the compact-open topology. If X is topologically torsion, then $S(X)$ stands for the set of primes p such that the corresponding topological p-primary component of X is non-zero. Given a positive integer n, we set $n X=\{n x \mid x \in X\}$ and $X[n]=\{x \in X \mid n x=0\}$.

Theorem 1. Let n be a positive integer, and let X be a group in \mathcal{L} such that $\overline{n X}$ is densely divisible and $t(X)=X[n]$. If $E(X)$ has no more than two non-trivial closed ideals, then X is either topologically torsion or topologically isomorphic with the topological direct product of a topologically torsion group by a group of the form $\mathbb{R}^{d}, \mathbb{Q}^{(\mu)}$, or $\left(\mathbb{Q}^{*}\right)^{\mu}$, where d is a positive integer and μ is a non-zero cardinal

Theorem 2. Let X be a group in \mathcal{L} such that $E(X)$ has no more than two non-trivial closed ideals. If X is topologically torsion, then $|S(X)| \leq 2$. If X is topologically isomorphic with a group of the form $S \times T$, where T is topologically torsion and S is either \mathbb{R}^{d} for some positive integer d, or $\mathbb{Q}^{(\mu)}$ or $\left(\mathbb{Q}^{*}\right)^{\mu}$ for some non-zero cardinal number μ, then $|S(X)| \leq 1$.

