On topological endomorphism rings with no more than two non-trivial closed ideals

Valeriu Popa

Institute of Mathematics and Computer Science, Moldova e-mail: vpopa@math.md

Let \mathcal{L} be the class of locally compact abelian groups. For $X \in \mathcal{L}$, we denote by t(X) the torsion subgroup of X and by E(X) the ring of continuous endomorphisms of X, taken with the compact-open topology. If X is topologically torsion, then S(X) stands for the set of primes p such that the corresponding topological p-primary component of X is non-zero. Given a positive integer n, we set $nX = \{nx \mid x \in X\}$ and $X[n] = \{x \in X \mid nx = 0\}$.

Theorem 1. Let n be a positive integer, and let X be a group in \mathcal{L} such that \overline{nX} is densely divisible and t(X) = X[n]. If E(X) has no more than two non-trivial closed ideals, then X is either topologically torsion or topologically isomorphic with the topological direct product of a topologically torsion group by a group of the form \mathbb{R}^d , $\mathbb{Q}^{(\mu)}$, or $(\mathbb{Q}^*)^{\mu}$, where d is a positive integer and μ is a non-zero cardinal

Theorem 2. Let X be a group in \mathcal{L} such that E(X) has no more than two non-trivial closed ideals. If X is topologically torsion, then $|S(X)| \leq 2$. If X is topologically isomorphic with a group of the form $S \times T$, where T is topologically torsion and S is either \mathbb{R}^d for some positive integer d, or $\mathbb{Q}^{(\mu)}$ or $(\mathbb{Q}^*)^{\mu}$ for some non-zero cardinal number μ , then $|S(X)| \leq 1$.

100