Some properties of Neumann quasigroups

Natalia Didurik

University "Dmitry Cantemir", Republic of Moldova e-mail:

Main concepts and definitions can be found in [1, 4, 6].

Definition 1. Quasigroup (Q, \cdot) is unipotent if and only if $x \cdot x = a$ for all $x \in Q$ and some fixed element $a \in Q$.

Definition 2. Quasigroup (Q, \cdot) has right unit element (a right unit) if there exists element e (unique) such that $x \cdot e = x$ for all $x \in Q$.

Definition 3. A quasigroup (Q, \cdot) is said to be Neumann quasigroup if in this quasigroup the identity

$$x \cdot (yz \cdot yx) = z \tag{1}$$

holds true [3, 5, 2], [7, p. 248].

In the articles [3, 7, 2] the following result is pointed out.

Theorem 1. If quasigroup (Q, \cdot) satisfies the following identity

$$xy \cdot z = y \cdot zx,\tag{2}$$

then (13)-parastrophe of this quasigroup satisfies Neumann identity (1).

Notice that the identity (2) has the following identity as its (13)-parastrophe : $(x \cdot yz) \cdot xy = z$.

Theorem 2. If quasigroup (Q, \cdot) satisfies the identity (2), then this quasigroup is an abelian group.

Theorem 3. Any Neumann quasigroup (Q, \cdot) is isotope of an abelian group (Q, +) of the form $x \cdot y = x - y$.

Corollary 1. Any Neumann quasigroup (Q, \cdot) is unipotent and has right unit element.

Bibliography

- V.D. Belousov. Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967. (in Russian).
- [2] A.A. Gvaramiya and M.M. Glukhov. A solution of the fundamental algorithmic problems in certain classes of quasigroups with identities. *Sibirsk. Mat. Zh.*, 10:297–317, 1969.
- [3] G. Higman and B. H. Neumann. Groups as groupoids with one law. Publ. Math. Debrecen, 2:215–221, 1952.
- [4] H.O. Pflugfelder. Quasigroups and Loops: Introduction. Heldermann Verlag, Berlin, 1990.
- [5] A. Sade. Quasigroupes obéissant á certaines lois. Rev. Fac. Sci. Univ. Istambul, 22:151–184, 1957.
- [6] Victor Shcherbacov. Elements of Quasigroup Theory and Applications. CRC Press, Boca Raton, 2017.
- [7] Sh. K. Stein. On the foundations of quasigroups. Trans. Amer. Math. Soc., 85(1):228-256, 1957.