On generalization of expressibility in 5-valued logic

Ion Cucu

State University of Moldova, Chişinău, Republic of Moldova e-mail: cucuion2012@gmail.com

The function f (the principal derivate operation) of algebra \mathfrak{A} is called parametrically expressible via a system of functions Σ of \mathfrak{A} , if there exists the functions $g_1, h_1, \ldots, g_m, h_m$ which are expressed explicitly via Σ using superpositions, such that the predicate $f(x_1...x_n) = x_{n+1}$ is equivalent to the predicate $\exists t_1...\exists t_k ((g_1 = h_1) \land ... \land (g_m = h_m))$ on the algebra \mathfrak{A} .

Let us consider the pseudo-Boolean algebra $\langle M; \wedge, \vee, \supset, \neg \rangle$, where \supset is relative pseudo-complement, and \neg is pseudo-complement.

We say that the system of pseudo-Boolean terms on the set of variables \mathcal{X} (Ω – words over \mathcal{X}) is parametrically complete in algebra $\langle M; \Omega \rangle$, if we can parametrically express the operations from Ω via functions expressed by terms over Σ . The function $f(x_1, ..., x_n)$ of M preserves the predicate (relation) $R(x_1, ..., x_m)$ if for any possible values $x_{ij} \in M$ (i = 1, ..., m; j = 1, ..., n) from the truth of $R(x_{11}, x_{21}, ..., x_{n1}), ..., R(x_{1n}, x_{2n}, ..., x_{mn})$ follows the truth of

$$R\left(f\left(x_{11}, x_{12}, ..., x_{1n}\right), ..., f\left(x_{n1}, x_{n2}, ..., x_{nm}\right)\right)$$

The centralizer $\langle f(x_1, ..., x_n) \rangle$ coincides with the set of all functions of M, which preserve the predicate $f(x_1, ..., x_n) = x_{n+1}$, where the variable x_{n+1} differs from $x_1, ..., x_n$.

We examine the 5-valued pseudo-Boolean algebra $Z_5 = \langle \{0, \rho, \tau, \omega, 1\}; \land, \lor, \supset, \neg \rangle$, where $0 < \rho < \omega < 1, 0 < \tau < \omega < 1, \rho$ and τ are incomparable elements. The algebra $Z_3 = \langle \{0, \omega, 1\}; \land, \lor, \supset, \neg \rangle$ is a subalgebra of Z_5 .

Let us define the function $\varphi(p)$ on Z_5 as follows:

$$\varphi(0) = 0, \varphi(\rho) = \tau, \varphi(\tau) = \rho, \varphi(\omega) = \varphi(1) = 1.$$

The logic of the algebra \mathfrak{A} is defined as the set of all formulas that are true on \mathfrak{A} , i.e. formulas identically equal to the greatest element 1 of this algebra.

Theorem 1. A system of formulas Σ is parametrically complete in the logic of algebra Z_5 iff Σ is parametrically complete in the logic of subalgebra Z_3 and the system Σ is not included into the centralizer $\langle \varphi(p) \rangle$ on algebra Z_5 .