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a) r ∈ A;

b) r /∈ dmk − conv(A− r).

Knowing m-extreme points of a set often simplifies the procedure of convex hull construction and
the study of its properties. Let denote by extm(A) the set of all m-extreme points of the set A.
Lemma 1. If A is a subset from m-ary relation Rk and r ∈ extm(A) then r ∈ extm(dmk −conv(A)).
From Lemma 1 results that extm(A) ⊂ extm(dmk − conv(A)).
Let be r ∈ A ⊂ Rk. We denote by ΓmA (r) = {z ∈ A : z ∪ r ∈ Rm} the set of all elements from
A that are joined with r through a m-dimensional chain of length one. Such a set may be named
m-dimensional neighborhood of the element r in A.
A complex of multi-ary relations Rn+1 =

(
R1, R2, ..., Rn+1

)
, defined on a set of elements X is

complete, if R1 = X and Rs = Xs, 2 ≤ s ≤ n + 1. The complex Rn+1 is named m-complete, if
Rm = Xm, 2 ≤ m ≤ n+ 1.
Lemma 2. If the complex Rn+1 =

(
R1, R2, ..., Rn+1

)
is m-complete, then it is and t-complete,

for any 2 ≤ t ≤ m.
Definition 2. The cortege r ∈ A ⊂ Rk is named m-simplicial cortege in A, if the set ΓmA (r)
generates a m-complete subcomplex.
Theorem 1. If the cortege r ∈ A ⊂ Rk is m-simplicial in A, then it is m-simplicial and in the set
dmk − conv(A).
It follows conditions in which an arbitrary cortege r from the set A ⊂ Rk is m-extreme point in A.
Theorem 2. The cortege r ∈ A ⊂ Rk is m-extreme point in A, if and only if r is m-simplicial
cortege in A.
Theorem 3. If dmk − conv(A) is the convex hull of a set A ⊂ Rk, then any m-extreme point from
dmk − conv(A) is m-extreme point in A.
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A non-empty set G is said to be a groupoid relatively to a binary operation denoted by {·}, if
for every ordered pair (a, b) of elements of G there is a unique element ab ∈ G.
A groupoid (G, ·) is called a quasigroup if for every a, b ∈ G the equations a · x = b and y · a = b
have unique solutions.
A quasigroup (G, ·) is called a Ward quasigroup if it satisfies the law (a · c) · (b · c) = a · b for all
a, b, c ∈ G.
A quasigroup (G, ·) is called a Cote quasigroup if it satisfies the law a · (ab · c) = (c · aa) · b for all
a, b, c ∈ G.
A groupoid (G, ·) is called a Manin quasigroup if it satisfies the law a · (b · ac) = (aa · b) · c for all
a, b, c ∈ G.
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We consider the following problem:
Problem 1. How many non-isomorphic Ward quasigroups, Cote quasigroups and Manin quasi-
groups of order 3, 4, 5, 6 do there exist?
We elaborated algorithms for generating non-isomorphic Ward quasigroups, Cote quasigroups
and Manin quasigroups of small order.The results established here are related to the work in
([1,2,3,4,5]). Applying the algorithms elaborated, we prove the following results:

Theorem 1. There are exactly:
- 1 non-isomorphic Ward quasigroup of order 3;
- 2 non-isomorphic Ward quasigroups of order 4;
- 1 non-isomorphic Ward quasigroup of order 5;
- 2 non-isomorphic Ward quasigroups of order 6.

Theorem 2. There are exactly:
- 3 non-isomorphic Cote quasigroups of order 3;
- 4 non-isomorphic Cote quasigroups of order 4;
- 2 non-isomorphic Cote quasigroups of order 5;
- 3 non-isomorphic Cote quasigroups of order 6.

Theorem 3. There are exactly:
- 3 non-isomorphic Manin quasigroups of order 3;
- 4 non-isomorphic Manin quasigroups of order 4;
- 4 non-isomorphic Manin quasigroups of order 5;
- 3 non-isomorphic Manin quasigroups of order 6.
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