Hausdorff extensions

Laurențiu I. Calmuțchi

Tiraspol State University, Republic of Moldova e-mail: lcalmutchi@gmail.com

Any space is considered to be a Hausdorff space. We use the terminology and notations from [3, 1, 2].

Let τ be an infinite cardinal.

A point $x \in X$ is called a $P(\tau)$ -point of the space X if for any non-empty family γ of open subsets of X for which $x \in \cap \gamma$ and $|\gamma| < \tau$ there exists an open subset U of X such that $x \in U \subset \cap \gamma$. If any point of X is a $P(\tau)$ -point, then we say that $P(\tau)$ -space.

Fix a set Φ of almost disjoint τ -centered families of subsets of the set E. We put $e_{\Phi}E = E \cup \Phi$. On $e_{\Phi}E$ we construct two topologies.

Topology $T^{s}(\Phi)$. The basis of the topology $T^{s}(\Phi)$ is the family $\mathcal{B}^{s}(\Phi) = \{U_{L} = L \cup \{\eta \in \Phi : H \subset L \text{ for some } H \in \eta\} : L \subset E\}.$

Topology $T_m(\Phi)$. For each $x \in E$ we put $B_m(x) = \{\{x\}\}$. For every $\eta \in \Phi$ we put $B_m(\eta) = \{V_{(\eta,L)} = \{\eta\} \cup L : L \in \eta\}$. The basis of the topology $T_m(\Phi)$ is the family $\mathcal{B}_m(\Phi) = \cup \{B_m(x) : x \in e_{\Phi}E\}$.

Theorem 1. The spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$ are Hausdorff zero-dimensional extensions of the discrete space E, and $T^s(\Phi) \subset T_m(\Phi)$). In particular, $(e_{\Phi}E, T^s(\Phi)) \leq (e_{\Phi}E, T_m(\Phi))$. **Theorem 2.** The spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$ are $P(\tau)$ -spaces.

Corollary 3. If $T^s(\Phi) \subset \mathcal{T} \subset T_m(\Phi)$, then $(e_{\Phi}E, \mathcal{T})$ is a Hausdorff extension of the discrete space E, and $(e_{\Phi}E, T^s(\Phi)) \leq (e_{\Phi}E, \mathcal{T}) \leq (e_{\Phi}E, T_m(\Phi))$.

Theorem 4. The space $(e_{\Omega}E, T^{s}(\Omega))$, where Ω is the set of well-ordered almost disjoint τ centered families, is a zero-dimensional paracompact space with character $\chi(e_{\Omega}E, T^{s}(\Omega)) = \tau$ and
weight $\Sigma\{|E|^{m} : m < \tau\}$.

Consider the Hausdorff extension rE of the space E. We put $e_{rE}X = X \cup (rE \setminus E)$. In $e_{rE}X$ we construct the topology $\mathcal{T} = T(\gamma, E, \xi_{\mu}, \tau)$.

Theorem 5. The space $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is a Hausdorff extension of the space X.

Theorem 6. If rE is a $P(\tau)$ -space, then $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is a $P(\tau)$ -space too. Moreover, $\chi(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau)) = \chi(X) + \chi(rE)$ and $w(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau)) = w(X) + w(rE)$.

Theorem 7. Assume that the spaces rE and X are zero-dimensional, and the sets $H_{(\mu,\alpha)}$ are open-and-closed in X. Then: 1. $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is a zero-dimensional space.

2. The space $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is paracompact if and only if the spaces rE and X are paracompact.

Bibliography

- L.Calmuţchi. Methods of construction of Hausdorff extensions. The Fourth Conference of Mathematical Society of the Republic of Moldova (dedicated to the centenary of Vladimir Andrunachevici(1917-1997)). Chişinau 2017, p.193-196
- [2] L.Calmuţchi. Construction of Hausdorff extensions. MITI2018 International conference on mathematics, informatics and information technologies dedicated to the illustrious scientist Valentin Belousov. 19-21 april, 2018. Bălţi, p.25-26.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.