Kernels in Transitively Orientable Graphs

Grigoriu Nicolae

State University of Moldova, Chişinău, Republic of Moldova

Kernel represents an abstract generalization of a concept of solution for cooperative games. These structures have many applications in game theory.[1] We will recall that kernel is a subset of vertices K of the directed graph $\vec{G} = (X; U)$ when K does not contain adjacent vertices and every vertex in $X \setminus K$ has a successor in K.[2]

Definition 1. [3] Graph $F = (X_F; U_F)$ is called B-stable subgraph of the undirected graph G = (X; U) if F is stable subgraph of G and for every stable subgraph M of G one of the following conditions is satisfied:

- 1. $X_F \cap X_M = \emptyset;$
- 2. $X_F \subseteq X_M$.

Theorem 1. If K is a kernel of the transitively oriented graph $\overrightarrow{G} = (X; \overrightarrow{U})$ and $x_i, x_j \in K$ then $x_i \in X_{F_i}$ and $x_j \in X_{F_j}$, $i \neq j$, where F_i, F_j are B-stable directed subgraphs of the graph G.

Bibliography

- [1] E. Boros, V.Gurvich. *Perfect graphs, kernels, and cores of cooperative games*, Discrete Mathematics, Volume 306, Issues 19-20, 6 October 2006, p. 2336-2354.
- [2] T. Fleiner. *Stable and crossing structures*, Ph.D. Thesis, Alferd Renyi Mathematical Institute of the Hungarian Academy of Science, 2000.
- [3] N. Grigoriu. *B-stable subgraphs in undirected graphs*, The third conference of Mathematical Society of the Republic of Moldova, Chişinău, 2014, p. 354-357.