Theorem 1. Let $n \in N$. If $2^{2^n} + 1$ is not prime, then for any number of the form 2^{2^n+a} , where $a \in N$, $a < 2^n$ exists exactly 2^t natural numbers m such that $\varphi(m) = 2^{2^{n+a}}$, where t is amount of prime Fermat numbers lesser than $2^{2^n} + 1$.

Example 2. For a non-prime Fermat number $2^{32} + 1$ number of preimages for subsequent numbers of form 2^{2^n+a} , $a \leq 32-1$ is equal to 2^{32} .

Theorem 2. If $\varphi(m) = 2^n$, then $m = 2^s p_1 p_2 \dots p_x$, where p_i are different Fermat numbers, $s \in N$.

Theorem 3. Right line with a positive coefficient, carried through the beginning because of the origin of the coordinates, is not the lower bound of the Euler function graph.

Bibliography

- [1] Michal Kevek, Florian Luca, Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer, CMS Books 9, ISBN 0-387-95332-9.
- Rodney Coleman, On the image of Euler's totient function. Journal of Computer mathematics Sci. (2012), Vol.3 (2), P. 185-189.
- [3] R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Sao Paulo Journal of Mathematical Sciences. (2018), no. 1, pp. 1-19. Source: https://link.springer.com/article/10.1007/s40863-018-0085-0.
- [4] R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Source: https://arxiv.org/abs/1702.05784v2

The Aumann-Pettis-Sugeno integral for vector multifunctions relative to a vector fuzzy multimeasure

Cristina Stamate¹ and Anca Croitoru²

¹ "Octav Mayer" Institute of Mathematics, Romanian Academy, Iaşi Branch, Bd. Carol I, No. 11, Iaşsi 700506, Romania;

² Faculty of Mathematics, "Alexandru Ioan Cuza" University, Bd. Carol I, no 11, Iaşi 700506, Romania

e-mail: cstamate@ymail.com, croitoru@uaic.ro

In this paper, we define and study the general Aumann-Pettis-Sugeno integral for a vector multifunction relative to a vector fuzzy multimeasure, both taking values in a locally convex space X, ordered by a closed convex pointed cone X_+ , with nonempty interior. For the selections of the multifunctions we use the general Pettis-Sugeno integral. Several classic properties of this integral and some comparative results are established.