About Cartesian Product of Two Subcategories

Dumitru Botnaru, Olga Cerbu

State University from Tiraspol, State University Moldova e-mail: dumitru.botnaru@gmail.com, olga.cerbu@gmail.com

Summary. We examine a categorial construction which permit to obtained a new reflective subcategories with a specal properties.

Key words: Reflective subcategories, the pairs of conjugated subcategories, the right product of the two subcategories.

Results. Let \mathcal{K} be a coreflective subcategory, and \mathcal{R} a reflective subcategory of the category of locally convex topological vector Hausdorff spaces $\mathcal{C}_2 \mathcal{V}$ with respective functors $k : \mathcal{C}_2 \mathcal{V} \longrightarrow \mathcal{K}$ and $r : \mathcal{C}_2 \mathcal{V} \longrightarrow \mathcal{R}$.

Concerning of the terminology and notation see [1]. Note by $\mu \mathcal{K} = \{m \in \mathcal{M}ono \mid k(m) \in \mathcal{I}so\}$, $\varepsilon \mathcal{R} = \{e \in \mathcal{E}pi \mid r(e) \in \mathcal{I}so\}$. Further for an arbitrary object X of the category $\mathcal{C}_2\mathcal{V}$ we examine the follows construction: let $k^X : kX \longrightarrow X$ is \mathcal{K} -coreplique, and $r^{kX} : kX \longrightarrow rkX$ -replique of the respective objects. On the morphism k^X and r^{kX} we construct the cocartesian square

$$\overline{v}^X \cdot k^X = u^X \cdot r^{kX}.\tag{1}$$

Definition 1. 1. The full subcategory of all isomorphic objects with the type of objects is called $\overline{v}X$ cartesian product of the subcategories \mathcal{K} and \mathcal{R} , noted by $\overline{v} = \mathcal{K} *_{dc} \mathcal{R}$.

2. The diagram of cartesian product is called the diagram of cartesian product of the pair of conjugate subcategories $(\mathcal{K}, \mathcal{R})$ (Diagram (RCP)).

Definition 2. The full subcategory of all isomorphic objects with the objects of type $\overline{v}X$ is called cartesian product of the subcategories \mathcal{K} and \mathcal{R} , note by $\overline{\mathcal{W}} = \mathcal{K} *_{sc} \mathcal{R}$.

Lemma 1. $\mathcal{R} \subset \mathcal{K} *_{dc} \mathcal{R}$.

Theorem 1. The application $X \mapsto \overline{v}X$ defined a functor

$$\overline{v}: \mathcal{C}_2 \mathcal{V} \longrightarrow \mathcal{K} *_{dc} \mathcal{R}.$$

We examine the following condition:

(RCP) For any object X of the category $C_2 \mathcal{V}$ in the diagram (RCP) the morphism u^X belongs to the class $\mu \mathcal{K}$.

Theorem 2. Let it be a pairs of the subcategories $(\mathcal{K}, \mathcal{R})$ verify the condition (RCP). Then \overline{v} it is a reflector functor.

Theorem 3. Let \mathcal{K} be a coreflective subcategory, but \mathcal{R} is a reflective subcategory of the category $C_2\mathcal{V}$, $\widetilde{\mathcal{M}}$ - the subcategory of the spaces with Mackey topology, \mathcal{S} is the subcategory of the spaces with weak topology. If $\mathcal{K} \subset \widetilde{\mathcal{M}}$, but $\mathcal{S} \subset \mathcal{R}$, then the pair of subcategories (\mathcal{K}, \mathcal{R}) verify condition (*RCP*) the cartesian product is a reflective subcategory.

Examples. 1. For any coreflective subcategory \mathcal{K} we have $\mathcal{K}_{*dc}\Pi = \Pi$, Π -reflective subcategory of the complete space with weak topology.

2. For any coreflective subcategory \mathcal{K} we have $\mathcal{K} *_{dc} \mathcal{S} = \mathcal{S}$, \mathcal{S} -reflective subcategory of the space with weak topology.

Theorem 4. Let $(\mathcal{K}, \mathcal{L})$ a pair of conjugate subcategories, and \mathcal{R} a reflective subcategory of the category $C_2\mathcal{V}$. Then:

1. $\mathcal{K} *_{dc} \mathcal{R} = \mathcal{Q}_{\varepsilon \mathcal{L}}(\mathcal{R})$, where $\mathcal{Q}_{\varepsilon \mathcal{L}}(\mathcal{R})$ is the full subcategory of all $\varepsilon \mathcal{L}$ -factorobjects of objects of the subcategory \mathcal{R} .

2. $\mathcal{K} *_{dc} \mathcal{R}$ is a reflective subcategory of the category $\mathcal{C}_2 \mathcal{V}$.

3. The subcategory $\mathcal{K} *_{dc} \mathcal{R}$ is closed in relation to $\varepsilon \mathcal{L}$ -factorobjects.

4. $\overline{v} \cdot k = r \cdot k$.

5. If $r(\mathcal{K}) \subset \mathcal{K}$, then the coreflector functor $k : \mathcal{C}_2 \mathcal{V} \longrightarrow \mathcal{K}$ and the reflector $\overline{v} : \mathcal{C}_2 \mathcal{V} \longrightarrow \mathcal{K} *_{dc} \mathcal{R}$ commute: $k \cdot \overline{v} = \overline{v} \cdot k$.

Theorem 5. Let \mathcal{K} (respective \mathcal{R}) a coreflective subcategory (respective: reflective) of the category $C_2\mathcal{V}$, those functors $k: C_2\mathcal{V} \longrightarrow \mathcal{K}$ and $r: C_2\mathcal{V} \longrightarrow \mathcal{R}$ commute: $k \cdot r = r \cdot k$. Then

$$\mathcal{K} *_{dc} \mathcal{R} = \mathcal{K} *_{d} \mathcal{R}.$$

Bibliography

- Botnaru D., Structures bicatégorielles complémentaires, ROMAI Journal, v.5, N.2, 2009, p. 5-27.
- [2] Botnaru D., Turcanu A., The factorization of the right product of two subcategories, ROMAI Journal, v.6, N.2, 2010, p. 41-53.