About Cartesian Product of Two Subcategories
 Dumitru Botnaru, Olga Cerbu
 State University from Tiraspol, State University Moldova
 e-mail: dumitru.botnaru@gmail.com, olga.cerbu@gmail.com

Summary. We examine a categorial construction which permit to obtained a new reflective subcategories with a specal properties.
Key words: Reflective subcategories, the pairs of conjugated subcategories, the right product of the two subcategories.
Results. Let \mathcal{K} be a coreflective subcategory, and \mathcal{R} a reflective subcategory of the category of locally convex topological vector Hausdorff spaces $\mathcal{C}_{2} \mathcal{V}$ with respective functors $k: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{K}$ and $r: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{R}$.

Concerning of the terminology and notation see [1]. Note by $\mu \mathcal{K}=\{m \in \mathcal{M}$ ono $\mid k(m) \in \mathcal{I}$ so $\}$, $\varepsilon \mathcal{R}=\{e \in \mathcal{E} p i \mid r(e) \in \mathcal{I} s o\}$. Further for an arbitrary object X of the category $\mathcal{C}_{2} \mathcal{V}$ we examine the follows construction: let $k^{X}: k X \longrightarrow X$ is \mathcal{K}-coreplique, and $r^{k X}: k X \longrightarrow r k X$-replique of the respective objects. On the morphism k^{X} and $r^{k X}$ we construct the cocartesian square

$$
\begin{equation*}
\bar{v}^{X} \cdot k^{X}=u^{X} \cdot r^{k X} \tag{1}
\end{equation*}
$$

Definition 1. 1. The full subcategory of all isomorphic objects with the type of objects is called $\bar{v} X$ cartesian product of the subcategories \mathcal{K} and \mathcal{R}, noted by $\bar{v}=\mathcal{K} *_{d c} \mathcal{R}$.
2.The diagram of cartesian product is called the diagram of cartesian product of the pair of conjugate subcategories $(\mathcal{K}, \mathcal{R})$ (Diagram (RCP)).

Definition 2. The full subcategory of all isomorphic objects with the objects of type $\bar{v} X$ is called cartesian product of the subcategories \mathcal{K} and \mathcal{R}, note by $\overline{\mathcal{W}}=\mathcal{K} *_{\text {sc }} \mathcal{R}$.

Lemma 1. $\mathcal{R} \subset \mathcal{K} *_{d c} \mathcal{R}$.
Theorem 1.The application $X \mapsto \bar{v} X$ defined a functor

$$
\bar{v}: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{K} *_{d c} \mathcal{R}
$$

We examine the following condition:
(RCP) For any object X of the category $\mathcal{C}_{2} \mathcal{V}$ in the diagram (RCP) the morphism u^{X} belongs to the class $\mu \mathcal{K}$.

Theorem 2. Let it be a pairs of the subcategories $(\mathcal{K}, \mathcal{R})$ verify the condition ($R C P$). Then \bar{v} it is a reflector functor.

Theorem 3. Let \mathcal{K} be a coreflective subcategory, but \mathcal{R} is a reflective subcategory of the category $\mathcal{C}_{2} \mathcal{V}, \widetilde{\mathcal{M}}$ - the subcategory of the spaces with Mackey topology, \mathcal{S} is the subcategory of the spaces with weak topology. If $\mathcal{K} \subset \widetilde{\mathcal{M}}$, but $\mathcal{S} \subset \mathcal{R}$, then the pair of subcategories $(\mathcal{K}, \mathcal{R})$ verify condition $(R C P)$ the cartesian product is a reflective subcategory.

Examples. 1. For any coreflective subcategory \mathcal{K} we have $\mathcal{K} *_{d c} \Pi=\Pi$, Π-reflective subcategory of the complete space with weak topology.
2. For any coreflective subcategory \mathcal{K} we have $\mathcal{K} *_{d c} \mathcal{S}=\mathcal{S}$, \mathcal{S}-reflective subcategory of the space with weak topology.

Theorem 4. Let $(\mathcal{K}, \mathcal{L})$ a pair of conjugate subcategories, and \mathcal{R} a reflective subcategory of the category $\mathcal{C}_{2} \mathcal{V}$. Then:

1. $\mathcal{K} *_{d c} \mathcal{R}=\mathcal{Q}_{\varepsilon \mathcal{L}}(\mathcal{R})$, where $\mathcal{Q}_{\varepsilon \mathcal{L}}(\mathcal{R})$ is the full subcategory of all $\varepsilon \mathcal{L}$-factorobjects of objects of the subcategory \mathcal{R}.
2. $\mathcal{K} *_{d c} \mathcal{R}$ is a reflective subcategory of the category $\mathcal{C}_{2} \mathcal{V}$.
3. The subcategory $\mathcal{K} *_{d c} \mathcal{R}$ is closed in relation to $\varepsilon \mathcal{L}$-factorobjects.
4. $\bar{v} \cdot k=r \cdot k$.
5. If $r(\mathcal{K}) \subset \mathcal{K}$, then the coreflector functor $k: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{K}$ and the reflector $\bar{v}: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{K} *_{d c} \mathcal{R}$ commute: $k \cdot \bar{v}=\bar{v} \cdot k$.

Theorem 5. Let \mathcal{K} (respective \mathcal{R}) a coreflective subcategory (respective: reflective) of the category $\mathcal{C}_{2} \mathcal{V}$, those functors $k: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{K}$ and $r: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{R}$ commute: $k \cdot r=r \cdot k$. Then

$$
\mathcal{K} *_{d c} \mathcal{R}=\mathcal{K} *_{d} \mathcal{R} .
$$

Bibliography

[1] Botnaru D.,Structures bicatégorielles complémentaires, ROMAI Journal, v.5, N.2, 2009, p. 5-27.
[2] Botnaru D., Turcanu A., The factorization of the right product of two subcategories, ROMAI Journal, v.6, N.2, 2010, p. 41-53.

