[7] C. Bujac, N. Vulpe, Cubic Differential Systems with Invariant Straight Lines of Total Multiplicity Eight possessing One Infinite Singularity, Qual. Theory Dyn. Syst. 16(2017), No. 1, 1-30.

Acknowledgement. The second author is partially supported by FP7-PEOPLE-2012-IRSES316338 and by the grant 12.839.08.05F from SCSTD of ASM.

A rational basis of $G L(2, \mathbb{R})$-comitants for the bidimensional polynomial system of differential equations of the fifth degree

lurie Calin ${ }^{1,2}$, Victor Orlov ${ }^{1,3}$
${ }^{1}$ Institute of Mathematics and Computer Science,
${ }^{2}$ Moldova State University,
${ }^{3}$ Technical University of Moldova, Chişinău, Republic of Moldova
e-mail: iucalin@yahoo.com, orlovictor@gmail.com

Let us consider the system of differential equations of the fifth degree

$$
\begin{equation*}
\frac{d x}{d t}=P_{0}+\sum_{i=1}^{5} P_{i}(x, y), \quad \frac{d y}{d t}=Q_{0}+\sum_{i=1}^{5} Q_{i}(x, y) \tag{1}
\end{equation*}
$$

where $P_{i}(x, y), Q_{i}(x, y)$ are homogeneous polynomials of degree i in x and y with real coefficients. The following $G L(2, \mathbb{R})$-comitants [1] have the first degree with respect to the coefficients of the system (1):

$$
\begin{gather*}
R_{i}=P_{i}(x, y) y-Q_{i}(x, y) x, \quad i=\overline{0,5} \\
S_{i}=\frac{1}{i}\left(\frac{\partial P_{i}(x, y)}{\partial x}+\frac{\partial Q_{i}(x, y)}{\partial y}\right), \quad i=\overline{1,5} \tag{2}
\end{gather*}
$$

Using the comitants (2) as elementary "bricks" and the notion of transvectant [2] the following
$G L(2, \mathbb{R})$-comitants of the system (1) were constructed:

$$
\begin{aligned}
& K_{001}=R_{0}, \\
& K_{101}=R_{1}, \\
& K_{103}=\left(R_{1}, R_{1}\right)^{(2)}, \\
& K_{202}=\left(R_{2}, R_{1}\right)^{(1)}, \\
& K_{204}=\left(\left(R_{2}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)}, \\
& K_{206}=\left(S_{2}, R_{1}\right)^{(1)}, \\
& K_{302}=\left(R_{3}, R_{1}\right)^{(1)}, \\
& K_{304}=\left(\left(R_{3}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)}, \\
& K_{306}=S_{3}, \\
& K_{308}=\left(S_{3}, R_{1}\right)^{(2)}, \\
& K_{402}=\left(R_{4}, R_{1}\right)^{(1)}, \\
& K_{404}=\left(\left(R_{4}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)}, \\
& K_{406}=\left(\left(\left(R_{4}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)}, \\
& K_{408}=\left(S_{4}, R_{1}\right)^{(1)}, \\
& K_{410}=\left(\left(S_{4}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)},
\end{aligned}
$$

$$
\begin{aligned}
& K_{002}=\left(R_{0}, R_{1}\right)^{(1)}, \\
& K_{102}=S_{1} \\
& K_{201}=R_{2} \\
& K_{203}=\left(R_{2}, R_{1}\right)^{(2)}, \\
& K_{205}=S_{2}, \\
& K_{301}=R_{3} \\
& K_{303}=\left(R_{3}, R_{1}\right)^{(2)}, \\
& K_{305}=\left(\left(R_{3}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)}, \\
& K_{307}=\left(S_{3}, R_{1}\right)^{(1)}, \\
& K_{401}=R_{4}, \\
& K_{403}=\left(R_{4}, R_{1}\right)^{(2)}, \\
& K_{405}=\left(\left(R_{4}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)}, \\
& K_{407}=S_{4}, \\
& K_{409}=\left(S_{4}, R_{1}\right)^{(2)}, \\
& K_{501}=R_{5},
\end{aligned}
$$

$$
\begin{aligned}
& K_{502}=\left(R_{5}, R_{1}\right)^{(1)} \\
& K_{504}=\left(\left(R_{5}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)} \\
& K_{506}=\left(\left(\left(R_{5}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)} \\
& K_{508}=S_{5} \\
& K_{510}=\left(S_{5}, R_{1}\right)^{(2)} \\
& K_{512}=\left(\left(S_{5}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)} .
\end{aligned}
$$

$$
\begin{aligned}
& K_{503}=\left(R_{5}, R_{1}\right)^{(2)}, \\
& K_{505}=\left(\left(R_{5}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)}, \\
& K_{507}=\left(\left(\left(R_{5}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)}, R_{1}\right)^{(2)}, \\
& K_{509}=\left(S_{5}, R_{1}\right)^{(1)}, \\
& K_{511}=\left(\left(S_{5}, R_{1}\right)^{(2)}, R_{1}\right)^{(1)},
\end{aligned}
$$

We denote by A the coefficient space of the system (1).
Definition 1. The set S of the comitants is called a rational basis on $M \subseteq A$ of the comitants for the system (1) with respect to the group $G L(2, \mathbb{R})$ if any comitant of the system (1) with respect to the group $G L(2, \mathbb{R})$ can be expressed as a rational function of elements of the set S.

Definition 2. A rational basis on $M \subseteq A$ of the comitants for the system (1) with respect to the group $G L(2, \mathbb{R})$ is called minimal if by the removal from it of any comitant it ceases to be a rational basis. In [3] was established a method for construction the rational bases of $G L(2, \mathbb{R})$ comitants for the bidimensional polynomial systems of differential equations by using different comitants of the system. In this paper we will present a rational basis of $G L(2, \mathbb{R})$-comitants for the bidimensional polynomial system of differential equations of the fifth degree in the case, when the comitant of the linear part $R_{1} \not \equiv 0$. Theorem. The set of $G L(2, \mathbb{R})$-comitants

$$
\begin{gathered}
\left\{K_{001}, K_{002}, K_{101}, K_{102}, K_{103}, K_{201}, K_{202}, K_{203}, K_{204}, K_{205}, K_{206}\right. \\
K_{301}, K_{302}, K_{303}, K_{304}, K_{305}, K_{306}, K_{307}, K_{308}, K_{401}, K_{402}, K_{403} \\
K_{404}, K_{405}, K_{406}, K_{407}, K_{408}, K_{409}, K_{410}, K_{501}, K_{502}, K_{503}, K_{504}, \\
\left.K_{505}, K_{506}, K_{507}, K_{508}, K_{509}, K_{510}, K_{511}, K_{512}\right\}
\end{gathered}
$$

is a minimal rational basis of the $G L(2, \mathbb{R})$-comitants for the system (1) of differential equations of the fifth degree on $M=\left\{a \in A \mid R_{1} \not \equiv 0\left(K_{101} \not \equiv 0\right)\right\}$.

Acknowledgement. This research is partially supported by the grant 15.817.02.03F from SCSTD of ASM

Bibliography

[1] K. S. Sibirsky, Introduction to the Algebraic Theory of Invariants of Differential Equations. Manchester University Press, 1988.
[2] G. B. Gurevich, Foundations of the Theory of Algebraic Invariants. Noordhoff, Groningen, 1964.
[3] Iu. Calin, On rational bases of $G L(2, \mathbb{R})$-comitants of planar polynomial systems of differential equations. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2003, nr. 2 (42), pp. 69-86.

