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Abstract. We propose an explanation of anomalous electron transport with giant current 
density at room temperature as a manifestation of high-temperature superconductivity 
in artificial periodic lattices of metallic nanospheres. The superconductivity is caused 
by emergence of strongly bound electron pairs for the electron states inside these 
spheres. This phenomenon is a consequence of the renormalization effect of the 
Coulomb law in a system of nanoobjects. 
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1. INTRODUCTION 

The technical exploitation of nanogranular materials (NGM) allows many 
ground breaking applications for miniaturized and macroscopic structures and 
systems [1]. One of the fascinating phenomena in NGM is the anomalous electron 
transport with giant current density at room temperature. Among the most 
important properties of this phenomenon one can mention the following: (i) the 
NGM represents a spatially periodic or quasi-periodic system of metallic 
nanospheres with the diameter from 2 nm to 4 nm; (ii) current densities as high as 2 
MA/cm2 to 100 MA/cm2 have been observed at room temperature; (iii) the phonon 
oscillations can not basically cause the emergence of Cooper pairs. We suggest that 
the phenomenon of giant current densities in NGM can be understood as a 
manifestation of the high temperature supeconductivity [2, 3]. The 
superconductivity is basically superfluidity [4] of charged bosons in external fields 
[5, 6]. Representing charge carriers e.g. in metals, conduction electrons can form 
stable pairs in certain conditions. These pairs are in fact bosons from which a 
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boson condensate is formed which determines the property of superfluidity. Note 
that the phenomenon of superfluidity/superconductivity is realized even with a 
small part of the substance being in the condensate state. The Coulomb interaction 
prevents the formation of pairs, but it is strongly attenuated by the Debye 
screening. The electron-phonon interaction in ordinary metals with a high specific 
resistivity can be a reason for the formation of bound pair consisting of electrons 
with opposite spins (Cooper pair) [7]. Since the electron-phonon interaction in 
normal metals is weak, the binding energy of Cooper pairs is low and 
superconductivity manifests itself only at very low temperatures. However, the 
direct Coulomb interaction between charge carriers can lead in certain conditions 
to the formation of bound electron pairs. The excitons can produce a superfluid 
Bose-Einstein condensate at very high excitation levels by a strong electromagnetic 
field [8, 9]. At the same time, the excitons are neutral particles and do not manifest 
the property of superconductivity. It is known that in conventional superconductors 
even a low current creates a critical magnetic field which destroys the electron 
pairs and the phenomenon of superconductivity disappears. By using composite 
materials from conventional superconductors and normal conductors one can 
significantly increase the critical magnetic field [10]. 

The electron-electron Coulomb interaction in usual bulk materials can be a 
reason of the Mott metal-insulator transition [11]. A correlation between such 
transitions and the superconductivity has been revealed in granular high-
temperature superconductors [12]. The existence of charge density wave in 
combination with Mott metal-insulator transition can be a reason of high-
temperature superconductivity in bulk materials [13]. 

It was demonstrated that in a system of nano-objects (nanocylinders) pure 
electric modes can emerge in the limit of zero frequency which were called 
ultrashort modes [14, 15]. These modes do not exist in individual nano-objects, and 
they are in fact photonic crystal modes. The existence of ultrashort electric-type 
modes is indicative of a significant restructuring of that part of electrical interaction 
between the charges in a nanocylinder system which is usually associated with 
longitudinal fields [16]. It is known that the Coulomb law, i.e. the attraction of 
charges of opposite sign and the repulsion of charges of the same sign, is the main 
phenomenon of the theory of charge interaction in the limit of low frequencies. 
Each charged particle participates in the creation of the electric field potential 

 ( ) ( , ) ( )dr r r r r′ ′ ′Φ = Π Ω∫ , (1) 

which creates a force field acting on the charges [ ( )rΩ is the charge density].  
The function П(Сoulomb)~|r–r′|-1>0, i.e. it is positive. Due to this fact, the spatial 

periodically variable distribution of charges in the medium will tend to return to a 
uniform stable distribution, to which a wave vector h ≡ 0 corresponds. However, 
the existence of ultrashort modes h ≠ 0 indicates that the spatial periodically 
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variable distribution of charges will be quite stable inside the nano-object system. 
This circumstance can be understood assuming that the law of charge interaction is 
significantly changed. We believe that under certain conditions the function П(r,r′) 
changes its shape so that the charges of the same sign could attract to each other, 
while the charges of opposite sign could repulse each other for some distributions 
of charges Ω(r) containing h ≠ 0. Therefore, a significant modification or 
renormalization of the Coulomb law can occur. 

The combination of nanomedia characterized by periodically variable 
parameters in the space with media containing free charge carriers opens 
possibilities for the creation of fundamentally new materials and devices. In this 
paper, we demonstrate this statement on the instance of a system of metallic 
nanospheres. We show that the modified Coulomb law can be a reason of the 
formation of stable electronic pairs, which are characteristic for the high-
temperature superconductivity. 

2. MATHEMATICAL MODEL 

We will consider a system of metallic nanospheres immersed in vacuum and 
arranged in an infinite cubic lattice with the lattice constant a, it being interacting 
with the electromagnetic field in the limit of very low frequencies ω<<(2πc/a). It 
follows from the Maxwell equations [17] that this case for a non-magnetic metal is 
described by the following equation: 

 0
ˆ ( ) ( )r rℜΦ = −Ω ε , (2) 

for the potential and electric field ( )( ) ( ) ( ) 0E r r H r= −∇Φ ≡ . Let use the 
following notations: 

 ℑ+ℵ=ℜ ˆˆ , (3) 

 ( ) 2ˆ ( ) div grad( ( )) ( ) / scr r r LℵΦ = − Φ +Φ , (4) 

 2( ) ( )(1 ( )) / scr r r LℑΦ = −Φ − ϑ . (5) 

The electrostatic screening length of the metal scL can be estimated according to 
the formula [18]  

 2
0 sc o scL e n∝ ε Ε , (6) 

where e is the electron charge, no is the free electron concentration, Εsс is a 
parameter with dimensions of energy. This parameter equals to Fermi energy EF in 
the case of a pure Fermi distribution of electrons. In the case of a non-Fermi 
(Maxwell or Bose) distribution, it will be equal to kBT, where T is the temperature 
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and kB is the Boltzmann constant. Since we assume the occurrence of the Bose 
condensation in the system, Εsс can take even lower values [19]. 

The spatial distribution of ( )rϑ in the vicinity of the coordinate origin is 
given by the value of  

 ( ) ( )r R rϑ = θ − , (7) 

where θ is the step function, R is the nanosphere radius. Our goal is to determine 
the Green’s function for (2)  

 3( , ) ( ) ( ) ( ) dk kr r r r k k∗′ ′Π = Φ Φ ℜ∫ , (8)  

(in fact this is a modified Coulomb law for the potential), where ( )kℜ  and ( )k rΦ  

are the eigenvalues and eigenfunctions of the operator ℜ̂ , satisfying the usual 
orthogonality relation ( )3dk k r k k′

∗ ′Φ Φ =δ −∫ . Because (8) can not be found in a 

general case, we will use the perturbation theory, assuming that the operator ℜ̂  is 
divided into the main term ℵ̂  and the perturbation ℑ . 

The eigenfunctions and eigenvalues of the operator ℵ̂  are well known: 

 
( )(0) 3 / 2

2 2

( ) exp i /(2 ) ,

( ) 1/ .

k

sc

r kr

k k L

Φ = π

ℵ = +
 (9) 

Then, the general Green’s function is presented in the form of a series in the small 
parameter ℑ  in the perturbation theory of Green's function of Schrödinger-Poisson 
system [20] 

 (0) (1) (2) ...Π =Π + Π + Π + , (10) 

from which we will use only the first two terms for simplicity. The choice of ℵ̂  in 
the form of (5) means that we are first of all interested in the regions inside the 
nanospheres where the electrons are located. Then, the screened Coulomb 
interaction inside the metal (4) is taken as a basic approximation of the Coulomb 
law, while the action of the vacuum regions is considered as a perturbation ℑ  in 
the form of (5), because electrons are practically absent in these regions. 

The main term ℵ̂  is chosen so that the Green’s function is easily found by 
means of (2, 9), and the Green’s function corresponds to the usual screened 
Coulomb law. 

 (0) ( ) exp[ | | / ] 4 | |scr r r r L r r′ ′ ′Π − = − − π − . (11) 

The second term in (1) is given by the following formula [20] 
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(1) 3 (0) (0)

(0) (0) 3 3

( , ) d ( ) ( ) ( )

( ) ( , ) ( ) ( ( ) ( )) d dkk

r r r r r r r r

r k k r k k k k∗
′

′ ′′ ′′ ′′ ′′ ′Π = − Π − ℑ Π − =

 ′ ′ ′ ′= − Φ ℑ Φ ℵ ℵ 

∫
∫

, (12) 

where 
 (0 ) ( 0 ) 3( , ) d

k k
k k r∗

′ ′
′ℑ = Φ ℑΦ∫ . (13) 

The shift of the one-electron state energy due to the direct Coulomb 
interaction between the ( )rΨ  states, which differ only in spin, in the zero order 
approximation with respect to the small parameter ℑ  is equal to [11] 

 
2

(0) 2 2 (0) 2 3 3 3
0e / | ( ) | ( , ) | ( ) | d d ( ) ( ) dr r r r r r k k k ′ ′ ′= ε Ψ Π Ψ = Ι ℵ  ∫ ∫Ε , (14) 

where 

 (0) 2 3( ) ( ) | ( ) | d
k

k r r rΙ = Φ Ψ∫ . (15) 

The shift of energy due to the direct Coulomb interaction for the same one 
electron state, but in the first order approximation with respect to the parameter ℑ  
is equal to 

 (1) 2 3 3
0/ ( ) ( ) ( , ) ( ( ) ( )) d de k k k k k k k k∗ ′ ′ ′ ′= − ε Ι Ι ℑ ℵ ℵ ∫Ε , (16) 

where 

 ( )
3

2

1( , ) (| | )
n

n n
D q

Rk k q R k k q
L a

 ′ ′ℑ = − ϑ δ − − 
 

∑ , (17)  

nq  is the wave-vector of the reciprocal three-dimensional square lattice, 

[ ] 3( ) 4 sin( ) cos( ) /x x x x xϑ = π − . 
In contrast to Ref. [11], we will use a simplest model of free electrons in an 

infinite spherical potential well [21] for the description of one-electron states inside 
a metallic nanosphere. Then, the one-electron state is defined by three quantum 
numbers: m (the energy levels are degenerate with respect to this quantum 
number), l and kn,l (or n). The one-electron eigenvalues and eigenfunctions are 

 
( )

( ) 2
,, ( ) 2 ,

( ) ( )

sphere
n ll n

lm l

E k

r n r

= µ

Ψ = Υ Ψ
 (18) 

where µ is electron effective mass, 

[ ]))()()((2 ,5.1,5.0
2

,5.0
2

,, RkJRkJRkJRkC lnLlnLlnLlnln +−+ −=  is a normalizing 
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constant [22] for the function , 0.5 , ,( ) ( ) /l n l L n l n lr C J k r k r+Ψ = (where 

2| | 1Ψ =∫ , Ylm(.) and Jl+0.5(.) are spherical Bessel functions). Note that the units of 

Cn,l are 1/nm3/2. Figure 1 presents the dependence of the Fermi energy of the 
electron subsystem of a nanosphere upon its radius at an electron gas concentration 
of n0 = 102 nm-3.  
 

 
Fig. 1 – Dependence of the normalized Fermi energy 2 22 (nm )FE −µ of the electron subsystem of 

a nanosphere upon its radius R. 

 Figure 2 illustrates the dependence of the nanosphere radius upon the 
quantum numbers ,n Lk  and L for states on the Fermi level so that all the electron 
states lower that this energy are totally filled, while the states higher than this 
energy are empty. 
 

 
Fig. 2 – Dependence of the nanosphere radius R upon the quantum numbers ,n Lk   

and L for the states on the Fermi level. 



7 Renormalization of the Coulomb law 773 

 We see from this graphs that some peculiarities are observed for R < 3 nm, 
which can be associated with quantum size effect. Further, by using the known 
one-electron wave functions (18), one can obtain the general shift of energy in the 
form of a series 

 ( )(0) (1)

, , , ,

2( ) (1) ( )
l n l n l n l n

n

sc n
q

a L q↑↓
 

= + ∆ − 
  

∑Ε Ε Ε Ε , (19) 

where 

 (0) 3 / 2 3 / 2

,

2
(0) 2 2

1 2 1 2 1 2 1 2
0 0

( , ) | ( ) | | ( ) | d d
l n

R

l ll
e r r r r r r r r= Ξ Ψ Ψ
ε ∫Ε , (20) 

 (0)
1 2 0.5 1 0.5 2( , ) ( / ) ( / )l sc l scl r r I r L K r L+ +Ξ = , (21) 

   3 / 2 3 / 2

,

2
(1) (1) 2 2

1 2 1 2 1 2 1 23 2
0 0

1 ( , , 0) | ( ) | | ( ) | d d
(2 )l n

R

l ll
e r r r r r r r r

a
∆ = Ξ Ψ Ψ

π ε ∫Ε , (22) 

 

(1)

,

3 / 2 3 / 2

22

2
0

(1) 2 2
1 2 1 2 1 2 1 2

0

( ) (| | )

( , , ) | ( ) | | ( ) | d d

l n n n

R

n l ll

e Rq q R
a a

r r r r q r r r r

 = ϑ ⋅ ε  

⋅ Ξ Ψ Ψ∫

Ε

, (23) 

 
( ) ( )(1)

1 2 0 0/ 2 / 2

0.5 1 0.5 2 3
2 2 2 2

( , , )

(| / 2 | ) (| / 2 | )
d

( / 2) 1/ ( / 2) 1/

n nn l ll k q k q

l n l n

n sh n sh

r r q n n

J k q r J k q r
k

k k q L k q L

∗
+ −

+ +

Ξ = Υ Υ ⋅

+ −
⋅

   + + − +   

∫
, (24) 

where Il+0.5(.), Kl+0.5(.) are modified Bessel functions [22], ( ) ( )
1 2 2 1( , ) ( , )l lr r r r• •Ξ ≡Ξ . 

One can neglect the value of 
,

(1)
l n

∆Ε  for R/a > 0.04. Since the functions 
(1)

, 0
( )

l n
n

n
q

q
≠

Ε tend to zero when qn→∞ as (1/qn)5, we will estimate hereinafter 

only (1)

, 0
( )

l n
n

n
q

q
≡

Ε . The following estimation is used of the modulus of one-

electron wave functions (18): 

 
( )

( )

2
2 2

0.5 , ,1
, 0; 1
2

2
0.5 , 0

,

| ( ) | | ( ) |

| ( ) | ,

LM
l n l lm l m LMl

n l M L L l

l n l l
n l

Cr J p r C n
p r

C J p r n
p r

+ −>>
≡ ≈ >>

+
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∑
 , (25) 
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where ,
LM
lm l mC − are the Clebsch-Gordan coefficients [23] which exhibit a rather 

sharp maximum as a function of L at l >> 1. 

3. RESULTS AND DISCUSSIONS 

The estimation of possibilities for the formation of bound electron pairs by 
means of formula (19) among a multitude of possible electron states at different 
nanosphere radii is a complicated task. Therefore, we will take into account first of 
all the electron states with maximum values of the normalization constant Cn,l 
among all the states situated nearby the Fermi level. We assume that the occurrence 
of the quantum size effects involves a change of one-electron density of states 
inside the nanosphere similar to that taking place in the electronic band structure 
near the Fermi level [24, 25]. At high values of Cn,l, the one-electron density of 
states is less spatially uniform and more “concentrated” in separate regions of the 
space inside the nanosphere. We suggest that such states are most sensitive to any 
modifications of the Coulomb law. Figure 3 presents the dependence of the 
effective length Leff =Cn,l

-2/3 upon the quantum numbers ,n lk  and l for the states on 
the Fermi level at a concentration of the electron gas of n0 = 102 nm-3. This graph 
suggests that the most significant effect will come from electron states with small 
values of ,n lk  and with values of l up to 30. According to Fig. 2, this corresponds 
to nanosphere radii R < 3 nm. 

 

 
Fig. 3 – Dependence of the effective length Leff = C-2/3 upon the quantum numbers ,n Lk  and L for 

states on the Fermi level which separates the filled and empty one-electron states. 

Hereinafter we will use an empiric parameter of Plasmon Length [26], which 
value can be considered as an upper limit of Lsc. The dependence of the energy 
shift 

,

( )
l n

↑↓Ε  upon the radius of metallic nanospheres for different one-electron 
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states (18) is described by (19) and consists of two different terms. As a result, 
from Fig. 4 one can observe that the formation of a stable electron pair is 
impossible at low values of the radius R < 1 nm, as (0)

, 0n l >Ε reaches higher 
positive values. This indicates on the possibility of a metal-insulator transition. At 
the same time, by a comparison of each term of (19) in Fig. 4 and Fig. 5 one can 
conclude that stable electron pairs are possible even for a pure Fermi screening  
Lsc = 102 nm and 3 nm > R > 1 nm for a part of electron states with high values of l. 
Then, the shift of energy 

,

( ) 0
l n

↑↓ <Ε  and the formation of a bound electron pair are 

energetically quite possible at least for a part of electron states. In this case, one 
should take into account that in fact there are even lower values of the parameter 
Lsc, for which the first term decreases and the second one increases, as Bose 
particles and Bose condensate emerge in the system. 

 

 
Fig. 4 – Dependence of the dimensionless energy ( )(0) 2

0,n l e RεΕ  upon the quantum numbers ,n Lk  

and L for states at the Fermi level. 

 
Fig. 5 – Dependence of the dimensionless energy ( ) ( )(1) 2 2

0, scn l a L e RεΕ  upon the quantum 

numbers ,n Lk  and L for states at the Fermi level. 
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In our calculations we have taken into account the discrete character of the 
energetic spectrum and the fact that only a part of electrons participates in the 
screening process. We used the relationship exp( / 2 )sc sc BL L k T→ ⋅ ∆ , where ∆  
is the mean value of the energy gap between the neighboring levels of electron 
energy inside the nanosphere. The value of ∆ ~ EF/N, where N = 4πR3⁄3n0, is the 
number of levels below the Fermi energy. 

Generally, one can conclude that the formation of bound quasi-Cooper pairs 
with a large binding energy is quite possible. 

4. CONCLUSION 

The results of our analytical consideration show that the renormalized 
Coulomb law, the quantum size effect on the density of one-electron functions, and 
the existence of a strong positive feedback between the phenomena of electron pair 
formation and Bose condensation can be the reason for the emergence of an 
anomalous electron transport with giant current density at room temperature. 
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