Structural and Vibrational Study of Pseudocubic CdIn₂Se₄ under Compression

David Santamaría-Pérez^{1,2,*}, Oscar Gomis³, André L.J. Pereira⁴, Rosario Vilaplana³, Catalin Popescu⁵, Juan Angel Sans⁴, Francisco Javier Manjón⁴, Placida Rodríguez-Hernández⁶, Alfonso Muñoz⁶, Vladislav. V. Ursaki⁷, Ion. M. Tiginyanu⁷

¹ Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain)

² Earth Sciences Department, University College London, Gower Street, WC1E 6BT, London (UK)

³ Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, Camí de Vera s/n, 46022 València (Spain)

⁴ Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team,

Universitat Politècnica de València, Camí de Vera s/n, 46022 València (Spain)

⁵CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola del Vallés, Barcelona (Spain)

⁶ Departamento de Física, Instituto Univ. de Materiales y Nanotecnología, MALTA Consolider

Team,, Universidad de La Laguna, La Laguna, Tenerife (Spain)

⁷ Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova,

2028 Chisinau (Moldova)

ABSTRACT

We report a comprehensive experimental and theoretical study of the structural and vibrational properties of α -CdIn₂Se₄ under compression. Angle-dispersive synchrotron x-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) towards a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to *ab initio* total-energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at ~ 2 GPa, CdIn₂Se₄ transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behaviour of this compound under compression and the structural and compressibility trends in *AB*₂Se₄ selenides are discussed.

KEYWORDS: ordered vacancy compounds, phase transition, high pressure, pseudocubic, X-ray diffraction, Raman, ab initio calculations

INTRODUCTION

Ternary adamantine $A^{II}B^{III}_{2}X_{4}$ semiconductors have been extensively investigated in the last 30 years mainly because they are tetrahedrally-coordinated ordered-vacancy compounds (OVCs) derived from the zincblende (ZB) structure whose behaviour locates them as a bridge between crystal and impurity physics¹. In these OVCs, only three quarters of the ZB cation sites are filled

leaving one vacant site per formula unit. This stoichiometric atomic-vacancy arrangement leads to tetragonal structures instead of cubic ones that provide to these compounds interesting optical and structural properties such as nonlinear-optic characteristics and order-disorder transitions¹⁻³. Particularly, studies of structural transformations of these semiconductors at high-pressure (HP) conditions have received increasing attention in the last years⁴⁻³¹, leading to systematics in compressibility and pressure - composition phase boundaries. It has been found that these semiconductors usually crystallize in tetragonal structures like defect chalcopyrite (DC) [space group (S.G.) *I-4*, No. 82, Z=2] and defect stannite (DS) [S.G. *I-42m*, No. 121, Z=2]. The behaviour of these structures at high pressures has been reviewed in several chapters³²⁻³⁴ of a recent monograph.

CdIn₂Se₄ is an OVC whose structural and vibrational properties have been thoroughly studied at ambient conditions. X-ray diffraction (XRD) measurements have evidenced that CdIn₂Se₄ shows structural polytypism as its tetragonal cell has been reported with at least three different *c/a* values of 1, 2 and 4, which correspond to the α , β and γ phases, respectively^{1, 35-38}. The different modifications can be obtained depending upon transport conditions during the crystal growth³⁶. The common α phase crystallizes in a tetragonal pseudocubic (PS) structure; therefore, α -CdIn₂Se₄ will be hereon noted as PS-CdIn₂Se₄. The structures of the β and γ phases are still unknown despite a structure similar to the DC phase has been proposed for the β phase³⁸. On the other hand, the vibrational properties of PS-CdIn₂Se₄ at ambient conditions have been studied by means of Raman scattering and Infrared spectroscopy and many similarities with the vibrational modes of the ZB structure have been found³⁹⁻⁴².

The structural relationship between the ZB (Fig. 1a) and PS (Fig. 1b) structures of $CdIn_2Se_4$ can be easily illustrated using a simple Bärnighausen-tree⁴³ (see Fig. 2). One starts with the