

High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa₂Se₄

O. Gomis,^{1,a)} R. Vilaplana,¹ F. J. Manjón,² D. Santamaría-Pérez,³ D. Errandonea,⁴ E. Pérez-González,⁵ J. López-Solano,⁵ P. Rodríguez-Hernández,⁵ A. Muñoz,⁵ I. M. Tiginyanu,⁶ and V. V. Ursaki⁶

¹Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain

²Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain

³Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s/n, 28040 Madrid, Spain

⁴Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia, Spain

⁵Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, MALTA Consolider Team, Universidad de La Laguna, 38205 Tenerife, Spain

⁶Institute of Applied Physics, Academy of Sciences of Moldova, 2028 Chisinau, Moldova

(Received 18 December 2012; accepted 1 February 2013; published online 20 February 2013)

In this work, we focus on the study of the structural and elastic properties of mercury digallium selenide (HgGa₂Se₄) which belongs to the family of AB_2X_4 ordered-vacancy compounds with tetragonal defect chalcopyrite structure. We have carried out high-pressure x-ray diffraction measurements up to 13.2 GPa. Our measurements have been complemented and compared with total-energy *ab initio* calculations. The equation of state and the axial compressibilities for the low-pressure phase of HgGa₂Se₄ have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The theoretical cation-anion and vacancy-anion distances in HgGa₂Se₄ have been determined. The internal distance compressibility in HgGa₂Se₄ has been compared with those that occur in binary HgSe and ε –GaSe compounds. It has been found that the Hg-Se and Ga-Se bonds behave in a similar way in the three compounds. It has also been found that bulk compressibility of the compounds decreases following the sequence " ε -GaSe > HgGa₂Se₄ > HgSe." Finally, we have studied the pressure dependence of the theoretical elastic constants and elastic moduli of HgGa₂Se₄. Our calculations report that the low-pressure phase of HgGa₂Se₄ becomes mechanically unstable above 13.3 GPa. © 2013 American Institute of *Physics*. [http://dx.doi.org/10.1063/1.4792495]

I. INTRODUCTION

Mercury digallium selenide (HgGa₂Se₄) is one of the less studied adamantine-type $A^{II}B_2^{III}X_4^{VI}$ ordered-vacancy compounds (OVCs) which crystallizes in the tetragonal defect-chalcopyrite (DC) structure with space group (S.G.) I-4, Z = 2. OVCs are tetrahedrally coordinated semiconductors, which are derived from the diamond and the zincblende or sphalerite (F-43 m) structures. They have a vacant cationic site in an ordered and stoichiometric fashion, i.e., a stoichiometric vacancy is located at a fixed Wyckoff position in the unit cell.¹ The presence of vacancies in OVCs results in a complex physics for these compounds.

OVCs are important materials to understand the role played by vacancies in the physical and chemical properties of solids because they constitute a bridge between perfect and defect materials. Besides, they are interesting materials to study order-disorder phase transitions occurring in tetrahedral semiconductors. A common trend in all adamantine OVCs is that they have several non-equivalent tetrahedrally coordinated cations resulting in a distortion of the crystal lattice from the cubic symmetry. The lack of cubic symmetry provides special properties to OVCs with important applications in optoelectronics, solar cells, and non-linear optics.^{1–4} These semiconductors are of interest as infrared-transmitting window materials among other applications. They are also applied in nonlinear optical devices and in narrow-band optical filters. In addition, OVCs are promising optoelectronic materials due to their high values of nonlinear susceptibility, optical activity, intense luminescence, and high photosensitivity.² They are interesting also in photovoltaics,⁵ in diluted magnetic semiconductors,⁶ and have already found practical applications as tunable filters and ultraviolet photodetectors.^{7,8}

High-pressure (HP) studies on $A^{II}B_2^{III}X_4^{VI}$ compounds are receiving increasing attention in the last years.^{9–26} In particular, the AGa₂Se₄ (A = Mn, Zn, and Cd) family has been studied by X-ray diffraction (XRD), Raman spectroscopy, and optical absorption. However, only few works have been devoted to the study of HgGa₂Se₄ under pressure. Recently, we reported optical absorption studies of DC-CdGa₂Se₄ and DC-HgGa₂Se₄ under pressure and focused on the explanation of the strong non-linear pressure dependence of their

^{a)}Corresponding author, email: osgohi@fis.upv.es.