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CONDIȚII CENTROAFIN-INVARIANTE DE STABILITATE A MIȘCĂRII 

NEPERTURBATE PENTRU SISTEMUL DIFERENȚIAL 𝒔(𝟏, 𝟐, 𝟑)  CU PARTEA 

PĂTRATICĂ DE TIP DARBOUX 

Rezumat. A fost determinată algebra Lie, seria Lyapunov și condițiile centroafin-invariante de stabilitate 

a mișcării neperturbate guvernate de sistemul critic de tip Lyapunov cu partea pătratică de tip Darboux. 

Cuvinte-cheie: Sistem diferențial, stabilitatea mișcării neperturbate, comitanți și invatianți centro-afini, 

algebră Lie, algebră Sibirschi graduată, grup. 

 

Introduction 

A lot of papers were written in the field of stability of motion. The universal scientific 

literature, concerning the stability of motion contains thousands of papers, including 

hundreds of monographs and textbooks of many authors. This literature is rich in the 

development of this theory, as well as in its applications in practice. 

Note that many problems on stability treated in these works are governed by two-

dimensional (or multidimensional) autonomous polynomial differential systems. Methods 

of the theory of invariants for such systems were elaborated in the school of differential 

equations from Chișinău. Moreover, there was developed the theory of the Lie algebras 

and Sibirsky graded algebras [1-5] with applications in the qualitative theory of these 

equations. 

With a special weight, in this domain, it is published the Lyapunov (1857-1918) PhD 

thesis concerning the stability of motion in 1882 [6]. This work contains many fruitful 

ideas and results of great importance. It is considered that all history related to the theory 

on stability of motion is divided into periods before and after Lyapunov. 

First of all, A.M. Lyapunov gave a strict definition of the stability of motion, which 

was so successful that all scientists took it as fundamental one for their researches. 
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In this paper and [7], with these visions was studied the Lie algebra, was built the 

Lyapunov series and was determined the stability of the unperturbed motion for two-

dimensional critical differential system 𝑠(1,2,3) with quadratic part of Darboux type. 

 

1. The Lie algebra allowed of Lyapunov canonical form of the differential system 

𝒔(𝟏, 𝟐, 𝟑) with quadratic part of Darboux type 

We will examine the differential system 𝑠(1,2,3) with quadratic part of Darboux type 

of the form 

𝑑𝑥𝑗

𝑑𝑡
= 𝑎𝛼

𝑗
𝑥𝛼 + 𝑎𝛼𝛽

𝑗
𝑥𝛼𝑥𝛽 + 𝑎𝛼𝛽𝛾

𝑗
𝑥𝛼𝑥𝛽𝑥𝛾      (𝑗, 𝛼, 𝛽, 𝛾 = 1,2),                    (1) 

where 𝑎𝛼𝛽
𝑗

 and 𝑎𝛼𝛽𝛾
𝑗

 are a symmetric tensors in lower indices in which the total 

convolution is done. Coefficients and variables in (1) are given over the field of real 

numbers ℝ. 

Remark 1.1. The characteristic equation of system (1) has one zero root and the other 

ones real and negative if and only if the following invariant conditions [7] hold  

𝐼1
2 − 𝐼2 = 0, 𝐼1 < 0,                                                      (2) 

where 

𝐼1 = 𝑎𝛼
𝛼 , 𝐼2 = 𝑎𝛽

𝛼𝑎𝛼
𝛽

.                                                  (3) 

When the characteristic equation of (1) has one zero root and the other one is negative, 

i.e. the conditions (2) and 𝑅2 ≡ 0 from (18) are satisfied, then this system by a center-

affine transformation can be brought to its critical form 

𝑑𝑥

𝑑𝑡
= 𝑥(𝑔𝑥 + 2ℎ𝑦) + 𝑝𝑥3 + 3𝑞𝑥2𝑦 + 3𝑟𝑥𝑦2 + 𝑠𝑦3 ≡ 𝑃,

𝑑𝑦

𝑑𝑡
= 𝑒𝑥 + 𝑓𝑦 + 𝑦(𝑔𝑥 + 2ℎ𝑦) + 𝑡𝑥3 + 3𝑢𝑥2𝑦 + 3𝑣𝑥𝑦2 + 𝑤𝑦3 ≡ 𝑄,

          (4) 

where 𝑎1
1 = 𝑎2

1 = 𝑎22
1 = 𝑎11

2 = 0  and 𝑎1
2 = 𝑒, 𝑎2

2 = 𝑓, 𝑎11
1 = 2𝑎12

2 = 𝑔, 𝑎12
1 =

1

2
𝑎22

2 = ℎ,

𝑎111
1 = 𝑝, 𝑎112

1 = 𝑞, 𝑎122
1 =  𝑟, 𝑎222

1 = 𝑠, 𝑎111
2 = 𝑡, 𝑎112

2 = 𝑢, 𝑎122
2 = 𝑣, 𝑎222

2 = 𝑤. 

We examine the determined equations [8] for system (4) 

𝜉𝑥
1𝑃 + 𝜉𝑦

1𝑄 = 𝜉1𝑃𝑥 + 𝜉2𝑃𝑦 + 𝐷(𝑃),

𝜉𝑥
2𝑃 + 𝜉𝑦

2𝑄 = 𝜉1𝑄𝑥 + 𝜉2𝑄𝑦 + 𝐷(𝑄),
                                           (5) 

where 

𝐷 = 𝜂1
𝜕

𝜕𝑒
+ 𝜂2

𝜕

𝜕𝑓
+ 𝜂3

𝜕

𝜕𝑔
+ 𝜂4

𝜕

𝜕ℎ
+ 𝜂5

𝜕

𝜕𝑝
+ 𝜂6

𝜕

𝜕𝑞
+ 𝜂7

𝜕

𝜕𝑟
+ 𝜂8

𝜕

𝜕𝑠
+

+𝜂9
𝜕

𝜕𝑡
+ 𝜂10

𝜕

𝜕𝑢
+ 𝜂11

𝜕

𝜕𝑣
+ 𝜂12

𝜕

𝜕𝑤
.

        (6) 

The polynomials 𝑃, 𝑄  are given in (4) and 𝜂𝑗  (𝑗 = 1,12̅̅ ̅̅ ̅̅ )  are functions of the 

parameters e, f, g, h, p, q, r, s, t, u, v, w. 

Let us consider 
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𝜉𝑗 = 𝐴𝑖𝑥 + 𝐵𝑖𝑦   (𝑖 = 1,2̅̅ ̅̅ ),                                                   (7) 

where 𝐴𝑖 , 𝐵𝑖 are unknown parameters.  

We write the operator  

𝑋 = 𝜉1
𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑦
+ 𝐷,                                                   (8) 

where 𝜉1, 𝜉2 are given in (7) and D is defined in (6). 

Solving the system of equations (5) with respect to the operators (6), (8) with 

coordinates (7)  we obtain 3 independent linear operators 

𝑋1 = 𝑥
𝜕

𝜕𝑥
− 𝑒

𝜕

𝜕𝑒
− 𝑔

𝜕

𝜕𝑔
− 2𝑝

𝜕

𝜕𝑝
− 𝑞

𝜕

𝜕𝑞
+ 𝑠

𝜕

𝜕𝑠
− 3𝑡

𝜕

𝜕𝑡
− 2𝑢

𝜕

𝜕𝑢
− 𝑣

𝜕

𝜕𝑣
, 

𝑋2 = 𝑦
𝜕

𝜕𝑦
+ 𝑒

𝜕

𝜕𝑒
− ℎ

𝜕

𝜕ℎ
− 𝑞

𝜕

𝜕𝑞
− 2𝑟

𝜕

𝜕𝑟
− 3𝑠

𝜕

𝜕𝑠
+ 𝑡

𝜕

𝜕𝑡
− 𝑣

𝜕

𝜕𝑣
− 2𝑤

𝜕

𝜕𝑤
,

𝑋3 = 𝑥
𝜕

𝜕𝑦
− 𝑓

𝜕

𝜕𝑒
− 2ℎ

𝜕

𝜕𝑔
− 3𝑞

𝜕

𝜕𝑝
− 2𝑟

𝜕

𝜕𝑞
− 𝑠

𝜕

𝜕𝑟
+ (𝑝 − 3𝑢)

𝜕

𝜕𝑡
+

      (9) 

+(𝑞 − 2𝑣)
𝜕

𝜕𝑢
+ (𝑟 − 𝑤)

𝜕

𝜕𝑣
+ 𝑠

𝜕

𝜕𝑤
. 

Remark 1.2. The system (4) admits a solvable three-dimensional Lie algebra 𝐿3 composed 

of operators (9). 

The following transformation of the phase plan 

𝑥 = 𝑥̅, 𝑦 = −𝛼𝑥̅ + 𝑦̅  

corresponds to the representation operator 𝑋3 from (9) of the system (4) . 

With this transformation, for 𝑓 ≠ 0, we can always get the equality e = 0. 

Remark 1.3. This property, for 𝑓 ≠ 0 , is true for any Lyapunov canonical two-

dimensional system. 

 

2. Invariant conditions of stability of unperturbed motion for critical system 

𝒔(𝟏, 𝟐, 𝟑) of Lyapunov type (4) with quadratic part of Darboux type 

According to Lyapunov's Theorem [6, §32], we examine the non-critical equation of 

the system (4) 

𝑒𝑥 + 𝑓𝑦 + 𝑔𝑥𝑦 + 2ℎ𝑦2 + 𝑡𝑥3 + 3𝑢𝑥2𝑦 + 3𝑣𝑥𝑦2 + 𝑤𝑦3 = 0.                 (10) 

Then from this relation we express y and obtain 

𝑦 = −
𝑒

𝑓
𝑥 − −

𝑔

𝑓
𝑥𝑦 − 2

ℎ

𝑓
𝑦2 −

𝑡

𝑓
𝑥3 − 3

𝑢

𝑓
𝑥2𝑦 − 3

𝑣

𝑓
𝑥𝑦2 −

𝑤

𝑓
𝑦3.            (11) 

We seek y as a holomorphic function of  x. Then we can write 

𝑦 = −
𝑒

𝑓
𝑥 + 𝐵2𝑥2 + 𝐵3𝑥3 + 𝐵4𝑥4 + 𝐵5𝑥5 + 𝐵6𝑥6 + 𝐵7𝑥7 + 𝐵8𝑥8 + 𝐵9𝑥9 + ⋯   (12) 

Substituting (12) into (11) and identifying the coefficients of the same powers of x in 

the obtained relation we have 
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𝐵2 =
𝑒

𝑓2
(𝑔 − 2

𝑒ℎ

𝑓
), 

𝐵3 = −[
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵2 +

1

𝑓
(𝑡 − 3

𝑒𝑢

𝑓
+ 3

𝑒2𝑣

𝑓2
−

𝑒3𝑤

𝑓3
)], 

𝐵4 = −[2
ℎ

𝑓
𝐵2

2 +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵3 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵2], 

𝐵5 = −[4
ℎ

𝑓
𝐵2𝐵3 + 3(

𝑣

𝑓
+

𝑒𝑤

𝑓2
)𝐵2

2 +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵4 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵3], 

𝐵6 = −[2
ℎ

𝑓
(2𝐵2𝐵4 + 𝐵3

2) +
𝑤

𝑓
𝐵2

3 + 6 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) 𝐵2𝐵3 +

1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵5 + 

+
3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵4], 

𝐵7 = −[4
ℎ

𝑓
(𝐵2𝐵5 + 𝐵3𝐵4) + 3

𝑤

𝑓
𝐵2

2𝐵3 + 3 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (2𝐵2𝐵4 + 𝐵3

2) + 

+
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵6 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵5], 

𝐵8 = −[2
ℎ

𝑓
(2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2) + 3
𝑤

𝑓
(𝐵2

2𝐵4 + 𝐵2𝐵3
2) + 

+6 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (𝐵2𝐵5 + 𝐵3𝐵4) +

1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵7 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵6], 

𝐵9 = −[4
ℎ

𝑓
(𝐵2𝐵7 + 𝐵3𝐵6 + 𝐵4𝐵5) +

𝑤

𝑓
(3𝐵2

2𝐵5 + 6𝐵2𝐵3𝐵4 + 𝐵3
3) + 

+3 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2) +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵8 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵7], 

𝐵10 = −[2
ℎ

𝑓
(2𝐵2𝐵8 + 2𝐵3𝐵7 + 2𝐵4𝐵6 + 𝐵5

2) + 3
𝑤

𝑓
(𝐵2

2𝐵6 + 2𝐵2𝐵3𝐵5 + 𝐵2𝐵4
2 + 

+𝐵3
2𝐵4) + 6 (

𝑣

𝑓
+

𝑒𝑤

𝑓2
) (𝐵2𝐵7 + 𝐵3𝐵6 + 𝐵4𝐵5) +

1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵9 + 

+
3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵8], 

𝐵11 = −[4
ℎ

𝑓
(𝐵2𝐵9 + 𝐵3𝐵8 + 𝐵4𝐵7 + 𝐵5𝐵6) + 3

𝑤

𝑓
(𝐵2

2𝐵7 + 2𝐵2𝐵3𝐵6 + 

+2𝐵2𝐵4𝐵5 + 𝐵3
2𝐵5 + 𝐵3𝐵4

2) + 3 (
𝑣

𝑓
+

𝑒𝑤

𝑓2
) (2𝐵2𝐵8 + 2𝐵3𝐵7 + 2𝐵4𝐵6 + 𝐵5

2) + 

+
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵10 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵9], 

𝐵12 = −[2
ℎ

𝑓
(2𝐵2𝐵10 + 𝐵3𝐵9 + 𝐵4𝐵8 + 𝐵5𝐵7 + 𝐵6

2) +
𝑤

𝑓
(3𝐵2

2𝐵8 + 6𝐵2𝐵3𝐵7 + 

+6𝐵2𝐵4𝐵6 + 3𝐵2𝐵5
2 + 3𝐵3

2𝐵6 + 6𝐵3𝐵4𝐵5 + 𝐵4
3) + 6 (

𝑣

𝑓
+

𝑒𝑤

𝑓2
) (𝐵2𝐵9 + 𝐵3𝐵8 + 
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𝐵4𝐵7 + 𝐵5𝐵6) + +
1

𝑓
(𝑔 − 2

𝑒ℎ

𝑓
) 𝐵11 +

3

𝑓
(𝑢 − 2

𝑒𝑣

𝑓
+

𝑒2𝑤

𝑓2
)𝐵10], …         (13) 

Substituting (12) into the right-hand side of the critical differential equation (4) we 

obtain 

𝑔𝑥2 + 2ℎ𝑥𝑦 + 𝑝𝑥3 + 3𝑞𝑥2𝑦 + 3𝑟𝑥𝑦2 + 𝑠𝑦3 = 

= 𝐴2𝑥2 + 𝐴3𝑥3 + 𝐴4𝑥4 + 𝐴5𝑥5 + 𝐴6𝑥6 + 𝐴7𝑥7 + 𝐴8𝑥8 + 𝐴9𝑥9 + 𝐴10𝑥10 + ⋯    

From this, taking into account (12) and (13), we get 

𝐴2 = 𝑔 − 2
𝑒ℎ

𝑓
, 

𝐴3 = 2ℎ𝐵2 + (𝑡 − 3
𝑒𝑞

𝑓
+ 3

𝑒2𝑟

𝑓2
−

𝑒3𝑠

𝑓3
)], 

𝐴4 = 2ℎ𝐵3 + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵2, 

𝐴5 = 2ℎ𝐵4 + 3(𝑟 −
𝑒𝑠

𝑓
)𝐵2

2 + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵3, 

𝐴6 = 𝑠𝐵2
3 + 2ℎ𝐵5 + 6(𝑟 −

𝑒𝑠

𝑓
)𝐵2𝐵3 + 3(𝑞 − 2

𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵4, 

𝐴7 = 3𝑠𝐵2
2𝐵3 + 2ℎ𝐵6 + 3 (𝑟 −

𝑒𝑠

𝑓
) (2𝐵2𝐵4 + 𝐵3

2) + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵5, 

𝐴8 = 3𝑠(𝐵2
2𝐵4 + 𝐵2𝐵3

2) + 2ℎ𝐵7 + 6 (𝑟 −
𝑒𝑠

𝑓
) (𝐵2𝐵5 + 𝐵3𝐵4) + 3(𝑞 − 2

𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵6, 

𝐴9 = 𝑠(3𝐵2
2𝐵5 + 6𝐵2𝐵3𝐵4 + 𝐵3

3) + 2ℎ𝐵8 + 3 (𝑟 −
𝑒𝑠

𝑓
) (2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2) + 

+3 (𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
) 𝐵7,                                                     (14) 

𝐴10 = 3𝑠(𝐵2
2𝐵6 + 2𝐵2𝐵3𝐵5 + 𝐵2𝐵4

2 + 𝐵3
2𝐵4) + 2ℎ𝐵9 + 6 (𝑟 −

𝑒𝑠

𝑓
) (𝐵2𝐵7 + 

+𝐵3𝐵6 + 𝐵4𝐵5) + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵8, 

𝐴11 = 3𝑠(𝐵2
2𝐵7 + 2𝐵2𝐵3𝐵6 + 2𝐵2𝐵4𝐵5 + 𝐵3

2𝐵5 + 𝐵3𝐵4
2) + 2ℎ𝐵10 + 

+3 (𝑟 −
𝑒𝑠

𝑓
) (2𝐵2𝐵8 + 2𝐵3𝐵7 + 2𝐵4𝐵6 + 𝐵5

2) + 3(𝑞 − 2
𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
)𝐵9, 

𝐴12 = 𝑠3(𝐵2
2𝐵8 + 6𝐵2𝐵3𝐵7 + 6𝐵2𝐵4𝐵6 + 3𝐵2𝐵5

2 + 3𝐵3
2𝐵6 + 6𝐵3𝐵4𝐵5 + 𝐵4

3) + 

+2ℎ𝐵11 + 6 (𝑟 −
𝑒𝑠

𝑓
) (𝐵2𝐵9 + 𝐵3𝐵8 + 𝐵4𝐵7 + 𝐵5𝐵6) + 3 (𝑞 − 2

𝑒𝑟

𝑓
+

𝑒2𝑠

𝑓2
) 𝐵10, … 

We introduce the following notations: 

𝑁1 = 𝑓𝑔 − 2𝑒ℎ;     𝑁2 = 𝑓3𝑝 − 3𝑒𝑓2𝑞 + 3 𝑒2𝑓 𝑟 − 𝑒3 𝑠; 

𝑁3 = 𝑓3𝑡 − 3𝑒𝑓2𝑢 + 3 𝑒2𝑓 𝑣 − 𝑒3 𝑤;   𝑁4 = 𝑓2𝑞 − 2 𝑒2𝑓 𝑟 − 𝑒3 𝑠;             (15) 

𝑁5 = 𝑓𝑟 − 𝑒𝑠. 
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Then, from (13) and (14) with this notations we obtain 

𝐵2 =
𝑒

𝑓3
𝑁1, 𝐵3 = −(

1

𝑓2
𝐵2𝑁1 +

1

𝑓4
𝑁3), 

𝐴2 =
1

𝑓
𝑁1, 𝐴3 = 2ℎ𝐵2 +

1

𝑓3
𝑁2, 𝐴4 = 2ℎ𝐵3 +

3

𝑓2
𝐵2𝑁4, 

𝐴5 = 2ℎ𝐵4 +
3

𝑓
𝐵2

2𝑁5 +
3

𝑓2
𝐵3𝑁4, 

𝐴6 = 𝑠𝐵2
3 + 2ℎ𝐵5 +

6

𝑓
𝐵2𝐵3𝑁5 +

3

𝑓2
𝐵4𝑁4, 

𝐴7 = 3𝑠𝐵2
2𝐵3 + 2ℎ𝐵6 +

3

𝑓
(2𝐵2𝐵4 + 𝐵3

2)𝑁5 +
3

𝑓2
𝐵5𝑁4,  

𝐴8 = 3𝑠(𝐵2
2𝐵4 + 𝐵2𝐵3

2) + 2ℎ𝐵7 +
6

𝑓
(𝐵2𝐵5 + 𝐵3𝐵4)𝑁5 +

3

𝑓2
𝐵6𝑁4, 

𝐴9 = 𝑠(3𝐵2
2𝐵5 + 6𝐵2𝐵3𝐵4 + 𝐵3

3) + 2ℎ𝐵8 +
3

𝑓
(2𝐵2𝐵6 + 2𝐵3𝐵5 + 𝐵4

2)𝑁5 +
3

𝑓2
𝐵7𝑁4,    

𝐴10 = 3𝑠(𝐵2
2𝐵6 + 2𝐵2𝐵3𝐵5 + 𝐵2𝐵4

2 + 𝐵3
2𝐵4) + 2ℎ𝐵9 + 

6

𝑓
(𝐵2𝐵7 + 𝐵3𝐵6 + 𝐵4𝐵5)𝑁5 +

3

𝑓2
𝐵8𝑁4, …                                 (16) 

Lemma 2.1. The stability of unperturbed motion in the system of perturbed motion (4) is 

described by one of the following twelve possible cases, if for expressions (15)                     

𝐼1 = 𝑓 < 0) the following conditions are satisfied: 

I. 𝑁1 ≠ 0, then the unperturbed motion is unstable; 

II. 𝑁1 = 0, 𝑁2 > 0, then the unperturbed motion is stable; 

III. 𝑁1 = 0, 𝑁2 < 0, then the unperturbed motion is unstable; 

IV. 𝑁1 = 𝑁2 = 0,  ℎ𝑁3 ≠ 0, then the unperturbed motion is unstable; 

V. 𝑁1 = 𝑁2 =  ℎ = 0; 𝑁3𝑁4 < 0, then the unperturbed motion is unstable; 

VI. 𝑁1 = 𝑁2 =  ℎ = 0; 𝑁3𝑁4 > 0, then the unperturbed motion is stable; 

VII. 𝑁1 = 𝑁2 = 𝑁4 =  ℎ = 0 , 𝑁3 ≠ 0 ; 𝑁5 > 0 , then the unperturbed motion is 

stable; 

VIII. 𝑁1 = 𝑁2 = 𝑁4 =  ℎ = 0 , 𝑁3 ≠ 0 ; 𝑁5 < 0 , then the unperturbed motion is 

unstable; 

IX. 𝑁1 = 𝑁2 = 𝑁4 =  𝑁5 = ℎ = 0 ; 𝑠𝑁3 < 0 , then the unperturbed motion is 

unstable; 

X. 𝑁1 = 𝑁2 = 𝑁4 =  𝑁5 = ℎ = 0; 𝑠𝑁3 > 0, then the unperturbed motion is stable; 

XI. 𝑁1 = 𝑁2 = 𝑁3 =  0, then the unperturbed motion is stable; 

XII. 𝑁1 = 𝑁2 = 𝑁4 =  𝑁5 = ℎ = 𝑠 = 0, then the unperturbed motion is stable. 

In the last two cases, the unperturbed motion belongs to some continuous series of 

stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and 

X. The expressions 𝑁𝑖  (𝑖 = 1,5̅̅ ̅̅ ) are given in (15).  
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Proof. According to Lyapunov Theorem [6, §32], the coefficients of the 𝐴𝑖 series from 

(14) are analyzed. 

If 𝐴2 ≠ 0 , then from (16) we get 𝑁1 ≠ 0  (taking into account that 𝐼1 = 𝑓 < 0). 

According to Lyapunov Theorem [6, §32], we have proved the Case I. 

If 𝐴2 = 0, i.e. 𝑁1 = 0 respectively 𝐵2 = 0, then by (16) the stability or the instability 

of unperturbed motion is determined by the sign of the expression 𝐴3  (the sign of the 

product 𝑁2). Using the Lyapunov Theorem [6, §32] we obtain the Cases II and III. 

If 𝑁1 = 𝑁2 = 0, then from (16) we get 𝐴4 = −2
ℎ

𝑓4
𝑁3. If ℎ𝑁3 ≠ 0. Then we obtain 

the Cases IV (see the Lyapunov Theorem [6, §32]). 

Suppose 𝑁1 = 𝑁2 = ℎ = 0. Then from (16) it results that 𝐴5 = −
3

𝑓6
𝑁3𝑁4. So the 

stability or the instability of the unperturbed motion is determined by the sign of expression 

𝑁3𝑁4. Using the Lyapunov Theorem [6, §32] we get the Cases V and VI. 

If 𝑁1 = 𝑁2 = 𝑁3 = 0, then all 𝐵𝑖 = 0  (𝑖 ≥ 3) and respectively 𝐴𝑖 = 0 (𝑖 ≥ 5). By 

the Lyapunov Theorem [6, §32] we have the Case XI. 

If 𝑁1 = 𝑁2 = 𝑁4 = ℎ = 0  and 𝑁3 ≠ 0,  then 𝐴6 = 0,  but 𝐴7 =
3

𝑓9
𝑁3

2𝑁5 . So the 

stability or the instability of the unperturbed motion is determined by the sign of expression 

𝑁5. Using the Lyapunov Theorem [6, §32] we get the Cases VII and VIII. 

If 𝑁1 = 𝑁2 = 𝑁4 = 𝑁5 = ℎ = 0  and 𝑁3 ≠ 0,  then 𝐴8 = 0,  but 𝐴9 = −
𝑠

𝑓12
𝑁3

3 . So 

the stability or the instability of the unperturbed motion is determined by the sign of 

expression 𝑠𝑁3. Using the Lyapunov Theorem [6, §32] we get the Cases IX and X. 

If 𝑁1 = 𝑁2 = 𝑁4 = 𝑁5 = ℎ = 𝑠 = 0 then all 𝐴𝑖 = 0 (∀𝑖) vanish. By the Lyapunov 

Theorem [6, §32] we get the Case XII.  Lemma 2.1 is proved. 

Let 𝜑  and 𝜓  be homogeneous comitants of degree 𝜌1  and 𝜌2  respectively of the 

phase variables x and y of a two-dimensional polynomial differential system. Then the 

transvectant 

(𝜑, 𝜓)(𝑗) =
(𝜌1 − 𝑗)(𝜌2 − 𝑗)

𝜌1! 𝜌2!
∑(−1)𝑗 (

𝑗
𝑖
)

𝑗

𝑖=0

𝜕𝑗𝜑

𝜕𝑥𝑗−𝑖𝜕𝑦𝑖

𝜕𝑗𝜓

𝜕𝑥𝑖𝜕𝑦𝑗−𝑖
                (17) 

is also a comitant for this system. 

In the Iu. Calin's works, see for example [9], it is shown that by means of the 

transvectant (17) all generators of the Sibirsky algebras of comitants and invariant for any 

system of type (1) can be constructed. 

According to [10] we write the following comitants of the system (1) 

𝑅𝑖 = 𝑃𝑖(𝑥, 𝑦)𝑦 − 𝑄𝑖(𝑥, 𝑦)𝑥, 𝑆𝑖 =
1

𝑖
(

𝜕𝑃𝑖(𝑥, 𝑦)

𝜕𝑥
+

𝜕𝑄𝑖(𝑥, 𝑦)

𝜕𝑦
) , (𝑖 = 1,3̅̅ ̅̅ ).   (18) 

Later on, we will need the following comitants and invariants from [10] of system (1) 

built by operations (17) and (18): 
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𝐼1 = 𝑆1,   𝐼2 = (𝑅1, 𝑅1)(2),   𝐼3 = ((𝑅3, 𝑅1)(2), 𝑅1)(2),   𝐼4 = (𝑆3, 𝑅1)(2),  

𝐾2 = 𝑅1,   𝐾5 = 𝑆2,   𝐾8 = 𝑅3,   𝐾9 = (𝑅3, 𝑅1)(1),   𝐾10 = (𝑅3, 𝑅1)(2),   (19)  

𝐾11 = ((𝑅3, 𝑅1)(2), 𝑅1)(1),   𝐾14 = (𝑆2, 𝑅1)(1),   𝐾15 = 𝑆3,   𝐾16 = (𝑆3, 𝑅1)(1). 

We consider for system (1) the following expressions composed of comitants and 

invariants from (19) that can be written in the form: 

𝒩1 = 2𝐾14 − 𝐼1𝐾5, 

  𝒩2 = 2𝐼1
2 𝐾10 − 4 𝐼1 𝐾11 − 3 𝐼1 𝐼2𝐾15 − 3 𝐼1

2𝐾16 +  4𝐼3𝐾2 + 3𝐼1 𝐼4𝐾2, 

𝒩3 = −12𝐼1 𝐾10 𝐾2 + 8 𝐾11 𝐾2 + 3 𝐼1
2 𝐾15 𝐾2 − 6 𝐼1 𝐾16 𝐾2 + 6 𝐼4 𝐾2

2 − 

−4 𝐼1
3 𝐾8 +  8 𝐼1

2 𝐾9,   𝒩4 = 2 𝐼3  +  𝐼1 𝐼4,   𝒩5 = 2 𝐾10  +  𝐼1 𝐾15 – 𝐾16,         (20) 

  𝑆 = 3 𝐾15 𝐾2  −  2 𝐼1 𝐾8  −  4 𝐾9. 

Theorem [11]. Let for system of perturbed motion (1) the invariant conditions (2)-(3) and 

𝑅2 ≡ 0 from (18) are satisfied. Then the stability of unperturbed motion is described by 

one of the following twelve possible cases: 

I. 𝒩1 ≢ 0, then the unperturbed motion is unstable; 

II. 𝒩1 ≡ 0, 𝒩2 > 0, then the unperturbed motion is stable; 

III. 𝒩1 ≡ 0, 𝒩2 < 0, then the unperturbed motion is unstable; 

IV. 𝒩1 ≡ 𝒩2 ≡ 0,  𝐾5𝒩3 ≢ 0, then the unperturbed motion is unstable; 

V. 𝒩1 ≡ 𝒩2 ≡  𝐾5 ≡ 0; 𝒩3𝒩4 < 0, then the unperturbed motion is unstable; 

VI. 𝒩1 ≡ 𝒩2 ≡  𝐾5 ≡ 0; 𝒩3𝒩4 > 0, then the unperturbed motion is stable; 

VII. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝐾5 ≡ 0, 𝒩3 ≢ 0; 𝑁5 > 0, then the unperturbed motion is stable; 

VIII. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝐾5 ≡ 0 , 𝒩3 ≢ 0 ; 𝑁5 < 0 , then the unperturbed motion is 

unstable; 

IX. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝒩5 ≡ 𝐾5 = 0; 𝑆𝒩3 < 0, then the unperturbed motion is unstable; 

X. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝒩5 ≡ 𝐾5 ≡ 0; 𝑆𝒩3 > 0, then the unperturbed motion is stable; 

XI. 𝒩1 ≡ 𝒩2 ≡ 𝒩3 ≡  0, then the unperturbed motion is stable; 

XII. 𝒩1 ≡ 𝒩2 ≡ 𝒩4 ≡  𝒩5 ≡ 𝐾5 ≡ 𝑆 ≡ 0, then the unperturbed motion is stable. 

In the last two cases, the unperturbed motion belongs to some continuous series of 

stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and 

X. The expressions 𝑆, 𝐾5, 𝒩𝑖  (𝑖 = 1,5̅̅ ̅̅ ) are given in (19)-(20).  

Proof. Observe that the first three expressions from (20), for critical system (4), look as 

follows: 

𝒩1 = −3𝑁1𝑥,   𝒩2 = 4𝑁2𝑥2,   𝒩3 = 8𝑁3𝑥4 − 8𝑁2𝑥3𝑦,   𝒩4 = 2𝑁4,

𝒩5 =
2

𝑓
𝑁5(𝑒𝑥 + 𝑓𝑦)2,   𝐾5 = 3

ℎ

𝑓
(𝑒𝑥 + 𝑓𝑦),   𝑆 = −4

𝑠

𝑓3
𝑁5(𝑒𝑥 + 𝑓𝑦)4.

(21) 

Using the expressions (21) and the last assertion together with Lemma 2.1, we obtain 

the Cases I-XII. We note that the comitants 𝒩2, 𝒩3𝒩4, 𝒩5, 𝑆𝒩3  from (20), used in the 

Cases II-X of Theorem, are even-degree comitants with respect to x and y and have the 

weights [1] equal to 0, 0, 0, -2, respectively. Moreover, each one of these comitants (in the 
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case when it is applied) is a binary form with a well-defined sing. This ensures that any 

center-affine transformation cannot change their sign. Theorem is proved. 

 

Conclusions 

In this paper the Lie algebra allowed by differential system 𝑠(1,2,3) of the Lyapunov 

canonical form with quadratic part of the Darboux type was determined, which is a solvable 

three-dimensional algebra. Based on the constructed Lyapunov series, all center-affine 

invariant conditions of stability of the unperturbed motion were obtained and they are 

included in twelve cases.  
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