Acta et Commentationes, Exact and Natural Sciences, nr. 2(6)2018 ISSN 2537-6284
Natalia Neagu, Victor Orlov, p. 51-59

CENTER-AFFINE INVARIANT CONDITIONS OF STABILITY OF
UNPERTURBED MOTION FOR DIFFERENTIAL SYSTEM s(1,2,3) WITH
QUADRATIC PART OF DARBOUX TYPE
Natalia NEAGU, PhD
Department of Informatics and Mathematics
“Ion Creanga” State Pedagogical University
Victor ORLOV, PhD, associate professor
Department of Mathematics, Technical University of Moldova

Abstract. The Lie algebra, the Lyapunov series and the center-affine invariant conditions of stability of
unperturbed motion have been determined by critical Lyapunov system with quadratic part of Darboux
type.

Keywords: Differential system, stability of unperturbed motion, center-affine comitant and invariant, Lie
algebra, Sibirsky graded algebra, group.

2010 Mathematics Subject Classification: 34C20, 34C45, 34D20

CONDITII CENTROAFIN-INVARIANTE DE STABILITATE A MISCARII
NEPERTURBATE PENTRU SISTEMUL DIFERENTIAL s(1,2,3) CUPARTEA

PATRATICA DE TIP DARBOUX
Rezumat. A fost determinata algebra Lie, seria Lyapunov si conditiile centroafin-invariante de stabilitate
a miscarii neperturbate guvernate de sistemul critic de tip Lyapunov cu partea patratica de tip Darboux.
Cuvinte-cheie: Sistem diferential, stabilitatea miscarii neperturbate, comitanti si invatianti centro-afini,
algebra Lie, algebra Sibirschi graduata, grup.

Introduction

A lot of papers were written in the field of stability of motion. The universal scientific
literature, concerning the stability of motion contains thousands of papers, including
hundreds of monographs and textbooks of many authors. This literature is rich in the
development of this theory, as well as in its applications in practice.

Note that many problems on stability treated in these works are governed by two-
dimensional (or multidimensional) autonomous polynomial differential systems. Methods
of the theory of invariants for such systems were elaborated in the school of differential
equations from Chisinau. Moreover, there was developed the theory of the Lie algebras
and Sibirsky graded algebras [1-5] with applications in the qualitative theory of these
equations.

With a special weight, in this domain, it is published the Lyapunov (1857-1918) PhD
thesis concerning the stability of motion in 1882 [6]. This work contains many fruitful
ideas and results of great importance. It is considered that all history related to the theory
on stability of motion is divided into periods before and after Lyapunov.

First of all, A.M. Lyapunov gave a strict definition of the stability of motion, which
was so successful that all scientists took it as fundamental one for their researches.
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In this paper and [7], with these visions was studied the Lie algebra, was built the
Lyapunov series and was determined the stability of the unperturbed motion for two-
dimensional critical differential system s(1,2,3) with quadratic part of Darboux type.

1. The Lie algebra allowed of Lyapunov canonical form of the differential system
s(1, 2, 3) with quadratic part of Darboux type

We will examine the differential system s(1,2,3) with quadratic part of Darboux type
of the form

dx’ : : - .
ar = QX" agpxtxl +agy xxxr e By =12), (1)
where aéﬁ and agzﬁy are a symmetric tensors in lower indices in which the total

convolution is done. Coefficients and variables in (1) are given over the field of real

numbers R.

Remark 1.1. The characteristic equation of system (1) has one zero root and the other

ones real and negative if and only if the following invariant conditions [7] hold
Z-1,=0  1,<0, (2)

where

I, =ag, I, = agag. (3)

When the characteristic equation of (1) has one zero root and the other one is negative,
I.e. the conditions (2) and R, = 0 from (18) are satisfied, then this system by a center-
affine transformation can be brought to its critical form

dx
e x(gx + 2hy) + px3 + 3qx?y + 3rxy* + sy> = P,
4)
d (
2 ex + fy + y(gx + 2hy) + tx3 + 3ux?y + 3vxy? + wy3 = Q,

dt
1
where aj = a3 =al, =a?, =0 and a? =e,a5 = f,a}, = 2a%, = g,ai, = Eagz = h,
1 _ 1 _ 1 _ 1 _ 2 _ 2 _ 2 _ 2 _
Q111 =D, Q112 =G, Q12 = 1, Q22 =S, Q111 = 1, Q112 = U, A1z =V, Agpp = W.
We examine the determined equations [8] for system (4)
1 1 — 1 2
§xP+8,Q0 =8P +$°P, + D(P),

5
E2P + £2Q = £1Q, + £2Q, + D(Q), ®)
where
9 9 9 9 9 9 9 9
D= 1__ 2 3_— 4 5_— 6 7 8 _—
U PR A R P A TR e PR mh i ©

) ) ) )
97 10 7 11 7 12 Y
Tt T e T

The polynomials P,Q are given in (4) and n/ (j = 1,12) are functions of the
parameterse, f,g,h,p,q,r,s, t, u,v,w.
Let us consider
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& =Ax+B'y (i=12), (7)
where A%, B* are unknown parameters.
We write the operator

x=a2i02% p (8)
- ox oy '
where &1, &2 are given in (7) and D is defined in (6).

Solving the system of equations (5) with respect to the operators (6), (8) with
coordinates (7) we obtain 3 independent linear operators

o a4 2 9 9 9 9 o 0
X1=Xa—e£—g@—2p%—q%+5£—3ta—2ua—0%,
_,29, 6,0 ,0 o0 08 ,0,0 9 , 0
X =yt e T o T T T T s e T Y M aw ©
X =x——fi—2hi—3 i—27"i—si+( -3 )i+
379y e “"ag  "Map “Taq Car TP T Wyt
9 9 @
+(q—2v)£+(r—w)%+sw.

Remark 1.2. The system (4) admits a solvable three-dimensional Lie algebra L; composed
of operators (9).

The following transformation of the phase plan

X =X, y=—ax+y

corresponds to the representation operator X5 from (9) of the system (4) .

With this transformation, for f # 0, we can always get the equality e = 0.
Remark 1.3. This property, for f # 0, is true for any Lyapunov canonical two-
dimensional system.

2. Invariant conditions of stability of unperturbed motion for critical system
s(1,2,3) of Lyapunov type (4) with quadratic part of Darboux type
According to Lyapunov's Theorem [6, §32], we examine the non-critical equation of
the system (4)

ex + fy + gxy + 2hy? + tx3 + 3ux?y + 3vxy? + wy3 = 0. (10)
Then from this relation we express y and obtain
e g h , t . u vo,ow o,
y=—=x———xy—2-y°——-x>—3Z-x°y—-3-xy° ——y°. (11)
f f f f f f f

We seek y as a holomorphic function of x. Then we can write
e 2 3 4 5 6 7 8 9
y = —?x + B,x“ + B3x® + Byx™ + Bsx®> + Bgx® + B;x” + Bgx® + Bgx” + -+ (12)

Substituting (12) into (11) and identifying the coefficients of the same powers of x in
the obtained relation we have
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B, =fi2(9_26}—h),

1 eh 1 eu e’v e3w
EBz+l<g—2 B; +— (u 2Q+62—W)B]
f2 f 3 £

eh
f
1 eh 3 ev ew

(ZBZB4+B§)+fBZ+6(f fz)BZB3 ;(g—ZTh)BS‘f‘

B4_ = _[2

B, = —[4a™ W
f

B, [zf

2 e
f foor
B, [4f(BzBs+B3B4)+3fB2B3+3(f fz)(ZBZB4+B32)+

+1< 2eh)B +3¢ Zev e W)B]
— — — u_ — ,
I7F)e Ty s
(ZBZB6+2B3B5+B)+3

Bg [2 (BZB, + B,B%) +

f f
ev e’w

<f fz)(BzBs-l—BngL)-l—;.( —ZTh)B7+f(u—ZT+ 7 ——)B,],

By [4 (ByB; + B3Bg + ByBs) + — (3B235 + 6B,B3B, + B3) +

f f
( ew)(ZBB + 2B;B +BZ)+1( zeh (u_2g+e2w)B]
fr? ae e f f £

h w
BlO == _[2?(23238 + 2B3B7 + 2B4B6 + Bé) + 37(32236 + ZBzB3B5 + BzB42_ +

) Bot >

1 eh
+B3 B4_) + 6 ( (BzB7 + BSB6 + B4_BS) + f( 2_) Bg +

f fz) f

+—(u —2—
f f
h w
Bll = _[4?(82B9 + B3BS + B4_B7 + BSB6) + 37(32237 + ZBZB3B6 +

e’w
+ f—z)Bs],

+2B,B,B + B2B: + B;B2) + 3 ( ) (2B,Bg + 2B3B, + 2B,B, + B2) +

ANE
+1< —Zeh)B NPT
fFAIT )P0 [

h w
Blz = _[2?(232810 + B3Bg + B4_B8 + BSB7 + B62) + 7(3822B8 + 6BzB3B7 +

+6B,B,B + 3B,B% + 3B2B, + 6B;B,Bs + BY) + 6( (B,Bo + B3Bg +

)
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2

B,B, + BsBs) + +1(g _ 2ﬂ) Butow-22+%p 1., 13)
f f f f f?

Substituting (12) into the right-hand side of the critical differential equation (4) we
obtain
gx? + 2hxy + px3 + 3qx?y + 3rxy? + sy3 =
= A,x% + A3x3 + Ayxt + Acx® + Agx® + A,x7 + Agx® + Agx® + Ajgxt0 + -
From this, taking into account (12) and (13), we get

eh
AZ = g - 27,
eq _e*r e3s
A; = 2hB, +(t—37+3f—2—f—3)],
er e’s
2
A5 = 2hB4_ + 3(7' 7)32 + 3(q - 2 f fz )B3)
2
A6 = SBS + 2hB5 + 6(1‘ - )BzB3 + 3(q - 2 2 )Bél-;
f f f
2
e
es T' e S

es
Ay = s(3B2B; + 6B,B3B, + B3) + 2hBg + 3 (r — 7) (2B,B¢ + 2B3Bs + BZ) +

er e-s
+3 (q - 27+f—2> B7, (14)

es

2
er e
+B3B6 + B4Bs) + 3(q - 2 7 + fz )BS,
Ay = 35(3237 + 2B,B3Bg + 2B,B,Bs + B2Bs + B;B? ) + 2hBy, +
2

e

Ay, = s3(B%Bg + 6B,B3B, + 6B,B,Bs + 3B,B% + 3B2B, + 6B;B,Bs + B}) +

es er e’s
+2h’Bll + 6 (T‘ - 7) (Bng + B3BS + B4_B7 + BsB6) + 3 ( - 2 7 + f2 )Blo,

We introduce the following notations:
N, = fg —2eh; N,=f3p—3ef?q+3e*fr—ess;
= f3t—3efu+3e’fv—e3w; N,=f?q—2e*fr—e3s; (15)
Ns = fr —es.
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Then, from (13) and (14) with this notations we obtain

e 1 1
B, = f_3N1: B; = _(f_szN1 + f_4N3)»
1 1 3
AZ = le, A3 = ZhBZ +f,_3N2, A4_ = 2hB3 + f,_2B2N4,
3 3
AS = 2hB4 + ?BZZNS + f,_2B3N4_,
; 6 3
A6 = SBZ + ZhBS + _BzB3N5 + _ZB4_N4_,
f f
3 3
A, = 3sB2B; + 2hBg + = (2B, B, + BY)Ns + — BN,

f f

6 3
AS = BS(BZZB4 + B2B§) + 2hB7 + _(BzBs + B3B4)N5 + _ZB6N4,
f f
3 3
A9 = S(SBZZBS + 6BzB3B4_ + B??) + ZhBS + f(ZBzB6 + 23335 + B‘f)NS + f,_ZB7N4_,
AlO == 35(B22B6 + 2B2B3B5 + BzBf + B3ZB4) + Zth +
6 3
? (BzB7 + B3B6 + B4_BS)N5 + f‘_ZBSNAl" (16)

Lemma 2.1. The stability of unperturbed motion in the system of perturbed motion (4) is
described by one of the following twelve possible cases, if for expressions (15)
I, = f < 0) the following conditions are satisfied:

l. N, # 0, then the unperturbed motion is unstable;

. N; = 0, N, > 0, then the unperturbed motion is stable;

1. N; =0,N, < 0, then the unperturbed motion is unstable;

IV. N; =N, =0, hN; # 0, then the unperturbed motion is unstable;

V. N, =N, = h =0; N;N, < 0, then the unperturbed motion is unstable;

VI. N; =N, = h=0; N3N, > 0, then the unperturbed motion is stable;

VII. Ny=N,=N,= h=0, N;#0,; Ns >0, then the unperturbed motion is

stable;

VIIl. Ny=N,=N,= h=0, N;#0,; Ns <0, then the unperturbed motion is
unstable;

IX. N,=N,=N,= N.=h=0; sN; <0, then the unperturbed motion is
unstable;

X. N;y=N,=N,= N;=h=0;sN; > 0, then the unperturbed motion is stable;
XI. N, =N, = N; = 0, then the unperturbed motion is stable;
XIl. N;=N,=N,= N =h=s =0, then the unperturbed motion is stable.
In the last two cases, the unperturbed motion belongs to some continuous series of
stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and
X. The expressions N; (i = 1,5) are given in (15).
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Proof. According to Lyapunov Theorem [6, §32], the coefficients of the A; series from
(14) are analyzed.

If A, # 0, then from (16) we get N; # 0 (taking into account that I; = f < 0).
According to Lyapunov Theorem [6, §32], we have proved the Case I.

If A, = 0,i.e. N, = 0 respectively B, = 0, then by (16) the stability or the instability
of unperturbed motion is determined by the sign of the expression A5 (the sign of the
product N,). Using the Lyapunov Theorem [6, §32] we obtain the Cases II and III.

If N, = N, = 0, then from (16) we get 4, = —Z%N& If hN; # 0. Then we obtain
the Cases IV (see the Lyapunov Theorem [6, §32]).
Suppose N; = N, = h = 0. Then from (16) it results that A = —%N3N4. So the

stability or the instability of the unperturbed motion is determined by the sign of expression
N;N,. Using the Lyapunov Theorem [6, §32] we get the Cases V and V1.

If Ny =N, = N; =0, then all B; = 0 (i = 3) and respectively A; = 0 (i = 5). By
the Lyapunov Theorem [6, §32] we have the Case XI.

If NN =N,=N,=h=0 and N; # 0, then A, = 0, but A7=f19N32N5. So the

stability or the instability of the unperturbed motion is determined by the sign of expression
Ne. Using the Lyapunov Theorem [6, §32] we get the Cases VIl and VIII.

12

the stability or the instability of the unperturbed motion is determined by the sign of
expression sN5. Using the Lyapunov Theorem [6, §32] we get the Cases IX and X.

If N\ =N, =N, = N; =h =5 = 0then all 4, = 0 (Vi) vanish. By the Lyapunov
Theorem [6, §32] we get the Case XII. Lemma 2.1 is proved.

Let ¢ and Y be homogeneous comitants of degree p, and p, respectively of the
phase variables x and y of a two-dimensional polynomial differential system. Then the
transvectant

(p1 = )p, — J)z( 1)] ' 0’1 a7
p1! P! 6x1 lay dxtdylt
Is also a comitant for this system.

In the lu. Calin's works, see for example [9], it is shown that by means of the
transvectant (17) all generators of the Sibirsky algebras of comitants and invariant for any
system of type (1) can be constructed.

According to [10] we write the following comitants of the system (1)

_ _1(oP(x,y) 0Qi(x,y)\ .. —
Ry = P,(x,y)y — Qi(x, ¥)x, Si—?< T 5 ),(1_1,3). (18)

Later on, we will need the following comitants and invariants from [10] of system (1)
built by operations (17) and (18):

(o, 1/,)(1’) =
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L =8, I,= (R1:R1)(2): I; = ((R3»R1)(2)»R1)(2)» Iy = (53:R1)(2):
K; =Ry, Ks=35; Kg=R3 Ky= (R3»R1)(1): Ko = (R3:R1)(2): (19)
K, = ((R3»R1)(2)»R1)(1)» Ky, = (52»R1)(1): Kis = 53, Ki6 = (53»R1)(1)-

We consider for system (1) the following expressions composed of comitants and

invariants from (19) that can be written in the form:
Ny = 2Ky4 — 1K,
N, =212 Kjg— 41, Ky — 31, LKys — 3 12K, + 41K, + 31; 1,K,,
Ny =-12I; K;o K, + 8K, K, + 312 Kis K, — 61, Kjg K, + 61, K2 —
—4 B3 Kg+ 812Ky, Ny =21, + L1, Ng=2Kyy + I, Kjs- K,  (20)
S=3K:sK, — 21, Ky — 4K,.
Theorem [11]. Let for system of perturbed motion (1) the invariant conditions (2)-(3) and
R, = 0 from (18) are satisfied. Then the stability of unperturbed motion is described by
one of the following twelve possible cases:
l. N, # 0, then the unperturbed motion is unstable;
1. N =0,, > 0, then the unperturbed motion is stable;
. N, = 0,, < 0, then the unperturbed motion is unstable;
IV. N =N, =0, KsV; # 0, then the unperturbed motion is unstable;
V. M =N = K; =0; V3V, <0, then the unperturbed motion is unstable;
VI.L. V=N, = = 0; V3V, > 0, then the unperturbed motion is stable;
VII. M =N, =N, = Ks =0, NV; #0; N; > 0, then the unperturbed motion is stable;
VIL M =M, =N, = Ks=0, N3 #0; N; <0, then the unperturbed motion is
unstable;

IX. M =N, =N, = N =K. = 0; SN; < 0, then the unperturbed motion is unstable;
X. M=N =N = N; =K =0; SN; > 0, then the unperturbed motion is stable;
Xl. N, =N, =N; = 0, then the unperturbed motion is stable;
XIl. M =N, =N, = N; =K =85 = 0, then the unperturbed motion is stable.

In the last two cases, the unperturbed motion belongs to some continuous series of
stabilized motion. Moreover, this motion is also asymptotic stable in Cases II, VI, VII and
X. The expressions S, Kz, V; (i = 1,5) are given in (19)-(20).

Proof. Observe that the first three expressions from (20), for critical system (4), look as
follows:

I
N

.N;_ = _3N1x, M = 4'N2x2, ‘NE)) = 8N3X4 - 8N2x3y, ]V;l- = 2N4_,
2 h S 21
N = ]7N5(ex + fy)?, Ks = 3]—C(ex + fy), S = —4f—3N5(ex +fy)4.( )

Using the expressions (21) and the last assertion together with Lemma 2.1, we obtain
the Cases I-XII. We note that the comitants IV,, N3V, Ns, SN; from (20), used in the
Cases I1-X of Theorem, are even-degree comitants with respect to x and y and have the
weights [1] equal to 0, 0, 0, -2, respectively. Moreover, each one of these comitants (in the
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case when it is applied) is a binary form with a well-defined sing. This ensures that any
center-affine transformation cannot change their sign. Theorem is proved.

Conclusions

In this paper the Lie algebra allowed by differential system s(1,2,3) of the Lyapunov

canonical form with quadratic part of the Darboux type was determined, which is a solvable
three-dimensional algebra. Based on the constructed Lyapunov series, all center-affine
invariant conditions of stability of the unperturbed motion were obtained and they are
included in twelve cases.
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