SOME PROPERTIES OF LEFT PRODUCT OF TWO SUBCATEGORIES

Dumitru BOTNARU*, prof. univ., dr. hab.
Alina TुURCANU**, lector univ., dr.
*Tiraspol State University
**Technical University of Moldova

Abstract

We study some properties of left product of two subcategories: one coreflective and one reflective in the category of local convex topological vectorial Hausdorff spaces. In this work on examined the situation generated by a structures of factorization $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)$ with certain properties, allowing to prove that the left product of some coreflective subcategories with any $\mathcal{P}^{\prime \prime}$ - reflective subcategory is one and the same. In addition, be indicated examples of coreflectors and reflectors functors which commutes.

Key words: coreflective and reflective subcategory, left product of two subcategories, coreflective subcategory of the topological Mackey spaces, subcategory of spaces with weak topology.

UNELE PROPRIETĂŢI ALE PRODUSULUI DE STÂNGA A DOUĂ SUBCATEGORII

Rezumat. Vom studia unele proprietăţi ale produsului de stânga a două subcategorii: una coreflectivă şi una reflectivă din categoria spaţiilor topologice Hausdorff vectoriale local convexe. În acest articol se va examina situaţia generată de structurile de factorizare $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)$ cu anumite proprietăţi, care va permite să demonstrăm că produsul de stânga a unor subcategorii coreflective cu orice $\mathcal{P}^{\prime \prime}$ - subcategorie reflectivă este una şi aceiaşi. În plus, vor fi indicate example de functori coreflectori şi reflectori care comută.
Cuvinte cheie: subcategorie coreflectivă şi reflectivă, produsul de stânga a două subcategorii, subcategoria coreflectivă a spaţiilor topologice Mackey, subcategoria spaţiilor cu topologie slabă.

$$
2010 \text { MSC: } 46 \text { M 15; } 18 \text { B } 30 .
$$

In category $\mathcal{C}_{2} \mathcal{V}$ of the local convex topological vectorial Hausdorff spaces are studied the properties of the left product of two subcategories $\mathcal{K} *_{s} \mathcal{R}$ - one coreflective \mathcal{K} and one reflective \mathcal{R}. On indicate sufficient conditions, that this product should be a coreflective subcategory (Theorem 2). We indicate examples when this product is not a coreflective subcategory (Proposition 1). We denote:

$$
\varepsilon \mathcal{R}=\{e \in \mathcal{E} p i \mid r(e) \in \mathcal{I} s o\}, \text { and } \mu \mathcal{K}=\{m \in \mathcal{M} \text { ono } \mid k(m) \in \mathcal{I} s o\}
$$

where $r: \mathcal{C}_{2} \mathcal{V} \rightarrow \mathcal{R}$ and $k: \mathcal{C}_{2} \mathcal{V} \rightarrow \mathcal{K}$ are the respective functors. It is known that the $\left((\varepsilon \mathcal{R}) \circ \mathcal{E}_{p},\left((\varepsilon \mathcal{R}) \circ \mathcal{E}_{p}^{\llcorner }\right)\right)$which we will note $\left(\mathcal{P}^{\prime \prime}(\mathcal{R}), \mathcal{I}^{\prime \prime}(\mathcal{R})\right)$ or $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)$ is a structure of factorization in $\mathcal{C}_{2} \mathcal{V}$, (to see [1]). Here $\left(\mathcal{E}_{p}, \mathcal{M}_{u}\right)$ is a structure of factorization defined by class \mathcal{M}_{u} of universal monomorphisms (to see [1], [4]).
\mathcal{R} is the smallest element in the class of $\mathcal{P}^{\prime \prime}$-reflective subcategories and there is the smallest element \mathcal{M} in the $\mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$ class of $\mathcal{I}^{\prime \prime}$-reflective subcategories. For any $\mathcal{K} \in \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$ and anything $\mathcal{R}_{1} \in \mathbb{R}\left(\mathcal{P}^{\prime \prime}\right)$ we have $\mathcal{K}=\mathcal{K} *_{s r} \mathcal{R}_{1}$ (Theorem 3). It is demonstrates that $\overline{\mathcal{M}}=\tilde{\mathcal{M}} *_{s} \mathcal{R}$, where $\tilde{\mathcal{M}}$ is the subcategory of Mackey spaces(Theorem 7). If \mathcal{R} contains subcategory \mathcal{S} of the spaces with weak topology, then functors $\bar{m}: \mathcal{C}_{2} \mathcal{V} \longrightarrow \overline{\mathcal{M}}$ and $r: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{R}$ commute: $\bar{m} \cdot r=r \cdot \bar{m}$ (Corollary 2).

We will use the following notation.
The structure of factorization:
$\left(\mathcal{E}_{u}, \mathcal{M}_{p}\right)=$ (the class of universal epimorphisms, the class of precise monomorphisms) $=($ the class of surjective applications, the class of topological inclusions $)$;
$\left(\mathcal{E}_{p}, \mathcal{M}_{u}\right)=$ (the class of precise epimorphisms, the class of universal monomorphisms)(to see [1]);

The coreflective and reflective subcategory:
$\tilde{\mathcal{M}}$ - the coreflective subcategory of spaces with Mackey topology;
Σ - the coreflective subcategory of the spaces with the strongest locally convex topology;
\mathcal{S} - the subcategory of spaces with weak locally convex topology;
Π - the subcategory of complete spaces with a weak topology;
\mathbb{K} - the class of nonzero coreflective subcategories;
\mathbb{R} - the class of nonzero reflective subcategories.
Concerning the notions and notations in category $\mathcal{C}_{2} \mathcal{V}$ see [6].
Either \mathcal{B} a class of bimorphisms. We denote $\mathbb{K}(\mathcal{B})$, (respectively $\mathbb{R}(\mathcal{B})$) - the class of \mathcal{B}-coreflective subcategories (respectively \mathcal{B}-reflective).

Let \mathcal{K} be is a epicoreflective subcategory, and \mathcal{R} is a monoreflective subcategory of category \mathcal{C} with corresponding functors $k: \mathcal{C} \rightarrow \mathcal{K}$ and $r: \mathcal{C} \rightarrow \mathcal{R}$. For any object X of category \mathcal{C} either $k^{X}: k X \rightarrow X$ and $r^{X}: X \rightarrow r X \mathcal{K}$-coreplica and \mathcal{R}-replica to this object. Further, either $r^{k X}: k X \rightarrow r k X \mathcal{R}$-replica of object $k X$, and $r\left(k^{X}\right): r k X \rightarrow r X$ that unique morphism for which

$$
\begin{equation*}
r\left(k^{X}\right) \cdot r^{k X}=r^{X} \cdot k^{X} \tag{1}
\end{equation*}
$$

On morphisms r^{X} and $r\left(k^{X}\right)$ we build the pull-back square

$$
\begin{equation*}
r^{X} \cdot w^{X}=r\left(k^{X}\right) \cdot f^{X} \tag{2}
\end{equation*}
$$

From equality (1) there exists a morphism t^{X} so that

$$
\begin{align*}
& w^{X} \cdot t^{X}=k^{X} \tag{3}\\
& f^{X} \cdot t^{X}=r^{k X} \tag{4}
\end{align*}
$$

Diagram of the left product (PS)
We denote by $\mathcal{W}=\mathcal{K} *_{s} \mathcal{R}$ the full subcategory of category \mathcal{C} consisting of all objects isomorphic to objects form $w X$.

Definition 1. The subcategory $\mathcal{W}=\mathcal{K} *_{s} \mathcal{R}$ is called the s-product or the left product of subcategories \mathcal{K} and \mathcal{R}.

Duality is defined the right product of two subcategories $\mathcal{V}=\mathcal{K} *_{d} \mathcal{R}$.

Check easy as correspondence $X \mapsto w X$ defines a functor $w: \mathcal{C} \rightarrow \mathcal{W}$. We shall say that \mathcal{W} is a coreflective subcategory, if w is an coreflector functor.

Examples have been constructed, showing that the left product of two subcategories is not a coreflective subcategory. Thereby emerged necessity to find sufficient conditions when the left product is a coreflective subcategory. In the paper [3] were established a series of necessary and sufficient conditions for that left product to be a coreflective subcategory.

The following theorems indicates sufficient conditions for that left product to be a coreflective subcategory, and the right product of two subcategories to be a reflective subcategory.
THEOREM 1. 1. Let \mathcal{K} be a \mathcal{M}_{u}-coreflective subcategory of the category \mathcal{C}. Then for any reflective subcategory \mathcal{R} of the category \mathcal{C} we have:
a) the left product $\mathcal{K} *_{s} \mathcal{R}$ is a \mathcal{M}_{u}-coreflective subcategory of category \mathcal{C};
b) the right product $\mathcal{K} *_{d} \mathcal{R}$ is a reflective subcategory of category \mathcal{C}.
1^{0}. Let \mathcal{R} be a \mathcal{E}_{u}-reflective subcategory of category \mathcal{C}. Then for any coreflective subcategory \mathcal{K} of category \mathcal{C} we have:
a) the right product $\mathcal{K} *_{d} \mathcal{R}$ is a \mathcal{E}_{u}-reflective subcategory of category \mathcal{C};
b) the left product $\mathcal{K} *_{s} \mathcal{R}$ is a coreflective subcategory of category \mathcal{C}.

For the category $\mathcal{C}_{2} \mathcal{V}$ previous theorem can be formulated as such:
THEOREM 2. 1. Let \mathcal{K} be is a coreflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$ and $\tilde{\mathcal{M}} \subset \mathcal{K}$. Then for any reflective subcategory \mathcal{R} of category $\mathcal{C}_{2} \mathcal{V}$ we have:
a) the left product $\mathcal{K} *_{s} \mathcal{R}$ is a coreflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$ and $\tilde{\mathcal{M}} \subset \mathcal{K} *_{s} \mathcal{R} ;$
b) the right product $\mathcal{K} *_{d} \mathcal{R}$ is a reflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$.
1^{0}. Let \mathcal{R} be is a reflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$ and $\mathcal{S} \subset \mathcal{R}$. Then for any coreflective subcategory \mathcal{K} of category $\mathcal{C}_{2} \mathcal{V}$ we have:
a) the right product $\mathcal{K} *_{d} \mathcal{R}$ is a reflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$ and $\mathcal{S} \subset \mathcal{K} *_{d} \mathcal{R} ;$
b) the left product $\mathcal{K} *_{s} \mathcal{R}$ is a coreflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$.

The above diagram indicates the cases when the left product is a coreflective subcategory, and cases where the right product is a reflective subcategory. The left product is not always a reflective subcategory. In category $\mathcal{C}_{2} \mathcal{V}$ and in the category $T h$ of Tihonov spaces there are examples when this product is not a reflective subcategory (see [5]).

PROPOSITION 1. In the category $\mathcal{C}_{2} \mathcal{V}$

1. The right product $\Sigma *_{d} \Pi$ is not a reflective subcategory.
2. The left product $\Sigma *_{s} \Pi$ is not a coreflective subcategory.

Proof. 1. We build the following diagram for object X does not belong to subcategory Π.

Because π^{X} is un mono, it results as well $\sigma\left(\pi^{X}\right)$ it's the same. Hence $\sigma\left(\pi^{X}\right)$ is sectionalized. So and v^{X} is sectionalized. If v^{X} is un epi, then it is un iso. In this case $\pi^{X} \in \mathcal{E}_{u} \cap \mathcal{M}_{u}$, i.e. π^{X} is un iso.
2. Is demonstrated in an analogous manner.

In cases where the left or right product is not a coreflective (respectively reflective) subcategory recourse is had to the factorization of these products (see [5]).

Let \mathcal{R} be a nonzero reflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$, for which we fix the structure of factorization $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=\left(\mathcal{P}^{\prime \prime}(\mathcal{R}), \mathcal{I}^{\prime \prime}(\mathcal{R})\right)$, where $\mathcal{P}^{\prime \prime}(\mathcal{R})=(\varepsilon \mathcal{R}) \circ \mathcal{E}_{p}$ (see [1]). This structure divides both the lattice \mathbb{K} of nonzero coreflective subcategories, as well as lattice \mathbb{R} of nonzero reflective subcategories in three classes:
$\mathbb{K}-\mathbb{K}\left(\mathcal{P}^{\prime \prime}\right), \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right), \mathbb{K}\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right) ;$
$\mathbb{R}-\mathbb{R}\left(\mathcal{P}^{\prime \prime}\right), \mathbb{R}\left(\mathcal{I}^{\prime \prime}\right), \mathbb{R}\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)$.
where $\mathbb{K}\left(\mathcal{P}^{\prime \prime}\right)=\left\{\mathcal{K} \in \mathbb{K} \mid \mathcal{K}\right.$ is $\mathcal{P}^{\prime \prime}$-coreflective $\}, \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)=\left\{\mathcal{K} \in \mathbb{K} \mid \mathcal{K}\right.$ is $\mathcal{I}^{\prime \prime}$-coreflective $\}$, $\mathbb{K}\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=\left\{\mathbb{K} \backslash\left(\mathbb{K}\left(\mathcal{P}^{\prime \prime}\right) \cup \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)\right)\right\} \cup\left\{\mathcal{C}_{2} \mathcal{V}\right\}$, and analogue division of lattice \mathbb{R}.
LEMMA 1. $\mathbb{K}\left(\mathcal{I}^{\prime \prime}\right) \subset \mathbb{K}\left(\mathcal{M}_{u}\right)$.

Proof. Because $\mathcal{I}^{\prime \prime} \subset \mathcal{M}_{u}$, it follows that any $\mathcal{I}^{\prime \prime}$-coreflective subcategory it is also \mathcal{M}_{u}-coreflective. It remains to be remembered that $\tilde{\mathcal{M}}$ is the smallest element in the class $\mathbb{K}\left(\mathcal{M}_{u}\right)$.

Thus class $\mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$ possess the smallest element that we will write $\overline{\mathcal{M}}$ and the class $\mathbb{R}\left(\mathcal{P}^{\prime \prime}\right)$ - the smallest element \mathcal{R}. The $\overline{\mathcal{M}}$-coreplique of an object X is obtained by performing $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)$-factorization of the Σ-coreplique $\sigma^{X}: \sigma X \rightarrow X$

$$
\sigma^{X}=i^{X} \cdot p^{X}
$$

Then i^{X} is $\overline{\mathcal{M}}$-coreplica of the object X.
LEMMA 2. Let $\mathcal{K} \in \mathbb{K}$ be a coreflective subcategory for which the product $\mathcal{K} *_{s} \mathcal{R}$ is a coreflective subcategory, and $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=\left(\mathcal{P}^{\prime \prime}(\mathcal{R}), \mathcal{I}^{\prime \prime}(\mathcal{R})\right)$. The following statements are equivalent:

1. $\mathcal{K} \in \mathbb{K}\left(\mathcal{M}_{u}\right)$.
2. $\mathcal{K} *_{s} \mathcal{R} \in \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$.

Proof. $1 \Rightarrow 2$. Because $\tilde{\mathcal{M}} \subset \mathcal{K}$, the product $\mathcal{K} *_{s} \mathcal{R}$ is a coreflective subcategory (Theorem 2). Let's build the diagram (PS) for un arbitrary object X of category $\mathcal{C}_{2} \mathcal{V}$.

In equality

$$
\begin{equation*}
k^{X}=w^{X} \cdot t^{X} \tag{1}
\end{equation*}
$$

$k^{X} \in \mathcal{M}_{u}$, and $t^{X} \in \mathcal{E} p i$. Because class \mathcal{M}_{u} is \mathcal{E} pi-cohereditary (see [1]), we deduce that $w^{X} \in \mathcal{M}_{u}$. So

$$
\begin{equation*}
r^{X} \cdot w^{X}=r\left(k^{X}\right) \cdot r^{w X}, \tag{2}
\end{equation*}
$$

is an pull-back square and $w^{X} \in \mathcal{M}_{u}$. According to the Theorem $7.3[4] w^{X} \in \mathcal{I}^{\prime \prime}=\mathcal{I}^{\prime \prime}(\mathcal{R})$. $2 \Rightarrow 1$. In equality

$$
\begin{equation*}
r^{k X}=r^{w X} \cdot t^{X} \tag{3}
\end{equation*}
$$

$r^{k X} \in \mathcal{M}_{u}$. So and $t^{X} \in \mathcal{M}_{u}$. Thus $w^{X} \in \mathcal{I}^{\prime \prime} \subset \mathcal{M}_{u}$ and $t^{X} \in \mathcal{M}_{u}$. From equality (1) it results that $k^{X} \in \mathcal{M}_{u}$.
THEOREM 3. Let \mathcal{K} be a coreflective subcategory of category $\mathcal{C}_{2} \mathcal{V}, \tilde{\mathcal{M}} \subset \mathcal{K}$, and $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=$ $\left(\mathcal{P}^{\prime \prime}(\mathcal{R}), \mathcal{I}^{\prime \prime}(\mathcal{R})\right)$. Then the following statements are equivalent:

1. $\mathcal{K} \in \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$.
2. $\mathcal{K}=\mathcal{K} *_{s} \mathcal{R}$.
3. For any element $\mathcal{R}_{1} \in \mathbb{R}\left(\mathcal{P}^{\prime \prime}\right)$, we have $\mathcal{K}=\mathcal{K} *_{s} \mathcal{R}_{1}$.

Proof. We will demonstrate the following implications: $1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1$.
$1 \Longrightarrow 2$. For arbitrary object X of the category $\mathcal{C}_{2} \mathcal{V}$ let $k^{X}: k X \rightarrow X \mathcal{K}$-coreplica be, and $r^{X}: X \rightarrow r X$ and $r^{k X}: k X \rightarrow r k X$ the \mathcal{R}-replicas of the respectively objects. We have the commutative square

$$
\begin{equation*}
r^{X} \cdot k^{X}=r\left(k^{X}\right) \cdot r^{k X} \tag{1}
\end{equation*}
$$

Because $\mathcal{K} \in \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$, it results that $k^{X} \in \mathcal{I}^{\prime \prime}$, and the square (1) is pull-back (Theorem 7.3 [4]). So $\mathcal{K}=\mathcal{K} *_{s} \mathcal{R}$.
$2 \Longrightarrow 3$. Let $\mathcal{K}=\mathcal{K} *_{s} \mathcal{R}$ and $\mathcal{R}_{1} \in \mathbb{R}\left(\mathcal{P}^{\prime \prime}\right)$ be. For the object $X \in\left|\mathcal{C}_{2} \mathcal{V}\right|$ let be $k^{X}: k X \rightarrow X \mathcal{K}$-coreplica, $r_{1}^{X}: X \rightarrow r_{1} X$ and $r_{1}^{k X}: k X \rightarrow r_{1} k X \mathcal{R}_{1}$-replicas of respective objects, and $r^{X}: X \rightarrow r X$ and $r^{k X}: k X \rightarrow r k X \mathcal{R}$-replicas of respective objects. Because $\mathcal{R} \subset \mathcal{R}_{1}$ we deduce that

$$
\begin{gather*}
r^{k X}=f^{r_{1} k X} \cdot r_{1}^{k X}, \tag{2}\\
r^{X}=f^{r_{1} X} \cdot r_{1}^{X} \tag{3}
\end{gather*}
$$

for two morphisms $f^{r_{1} k X}$ şi $f^{r_{1} X}$. We still have the equals:

$$
\begin{align*}
& r_{1}^{X} \cdot k^{X}=r_{1}\left(k^{X}\right) \cdot r_{1}^{k X}, \tag{4}\\
& r^{X} \cdot k^{X}=r\left(k^{X}\right) \cdot r^{k X} . \tag{5}
\end{align*}
$$

From these results we have and the equality

$$
\begin{equation*}
f^{r_{1} X} \cdot r_{1}\left(k^{X}\right)=r\left(k^{X}\right) \cdot f^{r_{1} k X} \tag{6}
\end{equation*}
$$

According to the hypothesis, the square (5) is pull-back, and in this diagram all morphisms are bimorphisms. It is easy to check that square (4) is also pull-back.

$3 \Longrightarrow 1$. Because $\mathcal{K}=\mathcal{K} *_{s} \mathcal{R}$, it results that the square

$$
\begin{equation*}
r^{X} \cdot k^{X}=r\left(k^{X}\right) \cdot r^{k X} \tag{7}
\end{equation*}
$$

is pull-back. On the other hand $\tilde{\mathcal{M}} \subset \mathcal{K}$. So $k^{X} \in \mathcal{M}_{u}$. Therefore $k^{X} \in \mathcal{I}^{\prime \prime}$, and $\mathcal{K} \in \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$.

The reflective subcategory \mathcal{R} establishes the following relationship of \mathcal{R}-equivalence in the class $\mathbb{K}\left(\mathcal{M}_{u}\right): \mathcal{K}_{1} \sim_{\mathcal{R}} \mathcal{K}_{2} \Longleftrightarrow \mathcal{K}_{1} *_{s} \mathcal{R}=\mathcal{K}_{2} *_{s} \mathcal{R}$. From Lemma 2 and the fact that $\left(\mathcal{K} *_{s} \mathcal{R}\right) *_{s} \mathcal{R}=\mathcal{K} *_{s} \mathcal{R}\left([3]\right.$, Proposition 4.2) We infer that any element of the lattice $\mathbb{K}\left(\mathcal{M}_{u}\right)$ Is equivalent to an element of the lattice $\mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$. Further,

$$
\mathcal{K} \subset \mathcal{K} *_{s} \mathcal{R}
$$

So $\mathcal{K} *_{s} \mathcal{R}$ is the biggest element in its equivalence class $\mathbb{A}(\mathcal{K})$.
LEMMA 3. Let \mathbb{A} be a class of \mathcal{R}-equivalence elements. Then \mathcal{W} is the biggest element in the class \mathbb{A}, where $\mathcal{W}=\mathcal{K} *_{s} \mathcal{R}$ with $\mathcal{K} \in \mathbb{A}$.
LEMMA 4. Let $\mathcal{K}_{1} \sim_{\mathcal{R}} \mathcal{K}_{2}$ and $\mathcal{K}_{1} \subset \mathcal{K} \subset \mathcal{K}_{2}$ be. Then $\mathcal{K}_{1} \sim_{\mathcal{R}} \mathcal{K} \sim_{\mathcal{R}} \mathcal{K}_{2}$.

Let \mathbb{A} be a class of \mathcal{R}-equivalence elements with the biggest element \mathcal{W}. According mentioned above for any element $\mathcal{K} \in \mathbb{A}$ we have

$$
r k X \sim r w X, \forall X \in\left|\mathcal{C}_{2} \mathcal{V}\right| .
$$

Let be

$$
\mathcal{A}^{\prime}=\cap\{\mathcal{K} \mid \mathcal{K} \in \mathbb{A}\} .
$$

\mathcal{A}^{\prime} is a coreflective subcategory and because $\tilde{\mathcal{M}} \subset \mathcal{K}$ for any $\mathcal{K} \in \mathbb{A}$, we deduced that $\tilde{\mathcal{M}} \subset \mathcal{A}^{\prime}$. It is evident, the class \mathbb{A} possesses the smallest element, iff $\mathcal{A}^{\prime} \in \mathbb{A}$.
LEMMA 5. Let $\mathcal{A}^{\prime} \in \mathbb{A}$ be. Then $\mathbb{A}=\left\{\mathcal{K} \in \mathbb{K}\left(\mathcal{M}_{u}\right) \mid \mathcal{A}^{\prime} \subset \mathcal{K} \subset \mathcal{W}\right\}$, where $\mathcal{W}=\mathcal{A}^{\prime} *_{s} \mathcal{R}$.
The following result chows that the smallest element $\overline{\mathcal{M}}$ of the class $\mathbb{K}\left(\mathcal{I}^{\prime \prime}(\mathcal{R})\right)$ can also be obtained as a left product, without resorting to the factorization structure $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=$ $\left(\mathcal{P}^{\prime \prime}(\mathcal{R}), \mathcal{I}^{\prime \prime}(\mathcal{R})\right.$).
THEOREM 4. $\overline{\mathcal{M}}=\tilde{\mathcal{M}} *_{s} \mathcal{R}$.
Proof. We build the diagram (PS) for an arbitrary object X of category $\mathcal{C}_{2} \mathcal{V}$ and for subcategories $\tilde{\mathcal{M}}$ and \mathcal{R}.

We write the respectively equality

$$
\begin{equation*}
r^{X} \cdot m^{X}=r\left(m^{X}\right) \cdot r^{m X} \tag{1}
\end{equation*}
$$

where $m^{X}: m X \rightarrow X$, is $\tilde{\mathcal{M}}$-coreplica of object X, and r^{X} and $r^{m X}$ - \mathcal{R}-replicas of respective objects and equality (1) takes place for a morphism $r\left(m^{X}\right)$.

$$
\begin{equation*}
r^{X} \cdot w^{X}=r\left(m^{X}\right) \cdot f^{X} \tag{2}
\end{equation*}
$$

is the pull-back square built on morphisms r^{X} and $r\left(m^{X}\right)$. Then

$$
\begin{align*}
& m^{X}=w^{X} \cdot t^{X} \tag{3}\\
& r^{m X}=f^{X} \cdot t^{X} \tag{4}
\end{align*}
$$

for a morphism t^{X}. We have $r^{X}, m^{X} \in \mathcal{M}_{u}$ and from equality (1) it results that $r\left(m^{X}\right)$. $r^{m X} \in \mathcal{M}_{u}$.

Because class \mathcal{M}_{u} is $\mathcal{E} p i$-cohereditary (see [1]) and $r^{X} \in \mathcal{E} p i$, we deduce that $r\left(m^{X}\right) \in \mathcal{M}_{u}$. Then in pull-back square (2) it results that $w^{X} \in \mathcal{M}_{u}$, and from equality (3) we deduce that $w^{X} \in \mathcal{E}_{u}$. So in equality (3) all morphisms belong to the class $\mathcal{E}_{u} \cap \mathcal{M}_{u}$. As mentioned above (see [3]) f^{X} is the \mathcal{R}-replica of object $w X$, and $r\left(m^{X}\right)=r\left(w^{X}\right)$. So square
(2) is pull-back, and $w^{X} \in \mathcal{M}_{u}$. According to the Theorem $7.3[4] w^{X} \in \mathcal{I}^{\prime \prime}(\mathcal{R})$. Further, t^{X} is un epi. Then from equality (4) results that $t^{X} \in \varepsilon \mathcal{R}$. Because $\mathcal{P}^{\prime \prime}(\mathcal{R})=(\varepsilon \mathcal{R}) \circ \mathcal{E}_{p}$ we deduce that $t^{X} \in \mathcal{P}^{\prime \prime}(\mathcal{R})$. So we get that (3) is ($\left.\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)$-factoring morphism m^{X}, and the coreflective subcategory $\mathcal{W}=\tilde{\mathcal{M}} *_{s} \mathcal{R}$ is equal to the subcategory $\overline{\mathcal{M}}$.
COROLLARY 1. 1. Class $\mathbb{A}(\tilde{\mathcal{M}})$ of elements in $\mathbb{K}\left(\mathcal{M}_{u}\right) \mathcal{R}$-equivalents with element $\tilde{\mathcal{M}}$ possesses the biggest element $\overline{\mathcal{M}}=\tilde{\mathcal{M}} *_{s} \mathcal{R}$, and

$$
\mathbb{A}(\tilde{\mathcal{M}})=\left\{\mathcal{K} \in \mathbb{K}\left(\mathcal{M}_{u}\right) \mid \tilde{\mathcal{M}} \subset \mathcal{K} \subset\left(\mathcal{M} *_{s} \mathcal{R}\right)\right\} .
$$

2. Because $\mathcal{C}_{2} \mathcal{V} *_{s} \mathcal{R}=\mathcal{C}_{2} \mathcal{V}$ the class of elements \mathcal{R}-echivalents with $\mathcal{C}_{2} \mathcal{V}$ contains one single element $\mathcal{C}_{2} \mathcal{V}$.

From the previous results, we have the following presentation of the latice $\mathbb{K}\left(\mathcal{M}_{u}\right)$ and the classes of \mathcal{R}-equivalence.

Let's highlight how the application $*_{s} \mathcal{R}$ works on the class $\mathbb{K}\left(\mathcal{M}_{u}\right)$.
Let $\mathcal{R} \in \mathbb{R}$ be. This reflective subcategory generating the factorization structure $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=\left(\mathcal{P}^{\prime \prime}(\mathcal{R}), \mathcal{I}^{\prime \prime}(\mathcal{R})\right)$. Respectively, this structure divides the lattice \mathbb{K} of nonzero coreflective subcategories into three classes:
$\mathbb{K}-\mathbb{K}\left(\mathcal{P}^{\prime \prime}\right), \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right), \mathbb{K}\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)$.
Remark 1. 1. Always $\mathbb{K}\left(\mathcal{I}^{\prime \prime}(\mathcal{R})\right) \subset\{\mathcal{T} \in \mathbb{K} \mid \overline{\mathcal{M}} \subset \mathcal{T}\}$. But these classes may be different.
2. $\mathbb{R}\left(\mathcal{P}^{\prime \prime}(\mathcal{R})\right)=\{\mathcal{H} \in \mathbb{R} \mid \mathcal{R} \subset \mathcal{H}\}$.
3. Let $\mathcal{T}, \mathcal{T}_{1} \in \mathbb{R}\left(\mathcal{M}_{u}\right), \mathcal{T} \subset \mathcal{T}_{1} \subset \mathcal{T} *_{s} \mathcal{R}$ be. Tnen $\mathcal{T} *_{s} \mathcal{R}=\mathcal{T}_{1} *_{s} \mathcal{R}$ (see[3]).

THEOREM 5. Let \mathcal{R} be a reflective subcategory of category $\mathcal{C}_{2} \mathcal{V}$, and $\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=\left(\mathcal{P}^{\prime \prime}(\mathcal{R}), \mathcal{I}^{\prime \prime}(\mathcal{R})\right)$. Then:

1. $\mathcal{K} *_{s} \mathcal{R} \in \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right) \Leftrightarrow \mathcal{K} \in \mathbb{K}\left(\mathcal{M}_{u}\right)$.
2. $\mathcal{K} *_{s} \mathcal{R}=\mathcal{K} \Leftrightarrow \mathcal{K} \in \mathbb{K}\left(\mathcal{I}^{\prime \prime}\right)$.
3. For any $\mathcal{K} \in \mathbb{A}(\tilde{\mathcal{M}})$ and all $\mathcal{T} \in \mathbb{R}\left(\mathcal{I}^{\prime \prime}\right)$ it takes place equality $\mathcal{K} *_{s} \mathcal{T}=\tilde{\mathcal{M}} *_{s} \mathcal{R}$.

Let $\mathcal{R}_{1} \subset \mathcal{R}_{2}$ be two elements of the lattice \mathbb{R}. Then $\mathcal{I}^{\prime \prime}\left(\mathcal{R}_{1}\right) \subset \mathcal{I}^{\prime \prime}\left(\mathcal{R}_{2}\right)$, and $\mathcal{P}^{\prime \prime}\left(\mathcal{R}_{2}\right) \subset \mathcal{P}^{\prime \prime}\left(\mathcal{R}_{1}\right)$. There is the following relationship between these classes.

THEOREM 6. Let $\mathcal{K} \in \mathbb{K}, \mathcal{R} \in \mathbb{R}$ and $\varepsilon \mathcal{R} \subset \mu \mathcal{K}$ be. Then:

1. $S \subset \mathcal{R}$.
2. The functor $w: \mathcal{C}_{2} \mathcal{V} \rightarrow \mathcal{K} *_{s} \mathcal{R}$ is an reflector functor.
3. The functors $w: \mathcal{C}_{2} \mathcal{V} \rightarrow \mathcal{K} *_{s} \mathcal{R}$ and $r: \mathcal{C}_{2} \mathcal{V} \rightarrow \mathcal{R}$ commute: $w \cdot r=r \cdot w$.

Proof. 1. Because $\mu \mathcal{K} \subset \mathcal{E}_{u}$ it results that $\varepsilon \mathcal{R} \subset \mathcal{E}_{u}$, The conditions $\varepsilon \mathcal{R} \subset \mathcal{E}_{u}$ and $S \subset \mathcal{R}$ are equivalents.
2. It results from Theorem 2.
3. We examine the Diagram (PS) for subcategory (\mathcal{K}, \mathcal{R}) (see the Diagram from Lemma 2). We have $r w X=r k X$. Further, $k r X=k X$, since $\varepsilon \mathcal{R} \subset \mu \mathcal{K}$. Because $r^{r X}=1$, it follows that $f^{r X}=1$, or $w^{r X}=1$. Therefore $w r X=r k r X=r k X$.
COROLLARY 2. Either the subcategory \mathcal{R} is \mathcal{E}_{u}-reflective $(S \subset \mathcal{R})$. Then the coreflector functor $\bar{m}: \mathcal{C}_{2} \mathcal{V} \longrightarrow \overline{\mathcal{M}}$ and the reflector $r: \mathcal{C}_{2} \mathcal{V} \longrightarrow \mathcal{R}$ commute: $\bar{m} \cdot r=r \cdot \bar{m}$.

Analogue takes place transformation of the class $\mathbb{R}\left(\mathcal{E}_{u}\right)$ (class of \mathcal{E}_{u}-reflective subcategories) by the right product.
Example 1. We denote $\mathbb{R}(\mathcal{S})=\{\mathcal{L} \in \mathbb{R} \mid \mathcal{L} \subset \mathcal{S}$. Let $\mathcal{L} \in \mathbb{R}(\mathcal{S})\}$ be. Then

1. $\mathcal{I}^{\prime \prime}(\mathcal{L}) \subset \mathcal{I}^{\prime \prime}(\mathcal{S})=\mathcal{M}_{p}$.
2. $\mathbb{K}\left(\mathcal{I}^{\prime \prime}(\mathcal{L})\right)=\left\{\mathcal{C}_{2} \mathcal{V}\right\} . \mathbb{K}\left(\mathcal{P}^{\prime \prime}(\mathcal{L})\right)=\mathbb{K} . \mathbb{K}\left(\mathcal{P}^{\prime \prime}, \mathcal{I}^{\prime \prime}\right)=\left\{\mathcal{C}_{2} \mathcal{V}\right\}$

Example 2. Let $\mathcal{R} \in \mathbb{R}\left(\mathcal{M}_{p}\right)$ be. Then $\mathcal{P}^{\prime \prime}(\mathcal{R})=(\varepsilon \mathcal{R}) \circ \mathcal{E}_{p}$, where $(\varepsilon \mathcal{R}) \subset \mathcal{M}_{p}$, and $\mathbb{K}\left(\mathcal{P}^{\prime \prime}(\mathcal{R})\right)=\mathbb{K}\left(\mathcal{E}_{p}\right)$.

Class $\mathbb{K}\left(\mathcal{E}_{p}\right)$ contains the element $\mathcal{C}_{2} \mathcal{V}$ and with each element contains the bigger elements of the lattice \mathbb{K}.
Problem. The class $\mathbb{K}\left(\mathcal{E}_{p}\right)$ contains other elements, except the element $\left\{\mathcal{C}_{2} \mathcal{V}\right\}$?
LEMMA 6. Let $\mathcal{R} \in \mathbb{R}\left(\mathcal{M}_{p}\right)$ be $\left(\Gamma_{0} \subset \mathcal{R}\right)$. Then $(\varepsilon \mathcal{R}) \perp\left(\mathcal{E}_{u} \cap \mathcal{M}_{u}\right)$.
COROLLARY 3. Let $\mathcal{R} \in \mathbb{R}\left(\mathcal{M}_{p}\right)$ be. Then $\mathbb{K}\left(\mathcal{I}^{\prime \prime}(\mathcal{R})\right)=\left\{\mathcal{C}_{2} \mathcal{V}\right\}$.
PROPOSITION 2. Let $\mathcal{K} \subset \widetilde{\mathcal{M}}$ and $\mathcal{K} \neq \widetilde{\mathcal{M}}$ be. Then $\mathcal{K} \in \mathbb{K}(\mathcal{P}, \mathcal{I})$.

$$
k X \xrightarrow{v_{c}^{X}} m X \xrightarrow{m^{X}} X
$$

Proof. Let $m^{X}: m X \rightarrow X$ be the $\tilde{\mathcal{M}}$-coreplica of X, and $v_{c}^{X}: k X \rightarrow m X \mathcal{K}$-coreplica of $m X$. There exist an object X so that v_{c}^{X} is not isomorphism. So $m^{X} \cdot v_{c}^{X}$ does not belong to the class \mathcal{M}_{u} and $m^{X} \cdot v_{c}^{X}$ does not belong to the class \mathcal{E}_{p}, because m^{X} would be an isomorphism.
Example 3. Let $\mathcal{L} \in \mathbb{R} \backslash\left(\mathbb{R}(S) \cup \mathbb{R}\left(\mathcal{M}_{p}\right)\right)$ be, and $\mathcal{P}^{\prime \prime}(\mathcal{L})=(\varepsilon \mathcal{L}) \circ \mathcal{E}_{p}$. So $\mathcal{P}^{\prime \prime}(\mathcal{L})$ intersects with $\mathcal{M}_{u}: \mathcal{P}^{\prime \prime}(\mathcal{L}) \cap \mathcal{M}_{u}=\varepsilon \mathcal{L}$. So here it results that $\mathbb{K}\left(\mathcal{P}^{\prime \prime}(\mathcal{L})\right) \cap \mathbb{K}\left(\mathcal{M}_{u}\right)$ may contain other elements except the element $\mathcal{C}_{2} \mathcal{V}$.

References

1. Botnaru D. Structures bicatégorielles complémentaires. In: ROMAI Journal, V.5, N 2, 2009. p. 5-27.
2. Botnaru D., Cerbu O. Semireflexive product of two subcategories. In: Proc. of the Sixth Congress of Romanian Mathematicians. Bucharest, V.1, 2007. p. 5-19.
3. Botnaru D., Ţurcanu A. Les produits de gauche et de droite de deux souscategories. In: An. Universitatii de Stat Tiraspol: Acta et Coment., VIII. Chisinau: UST, 2003. p. 57-73.
4. Botnaru D., Tुurcanu A. On Giraud subcategories in locally convex space. In: ROMAI Journal, V.I, N 1, 2005. p. 7-30.
5. Botnaru D., Tुurcanu A. The Hewitt spaces as right factorized product of two subcategories. In: Buletinul Institutului Politehnic din Iaşi, Tomul LVII (LXI), Fasc. 1, 2011. p. 37-46.
6. Robertson A. P., Robertson W. J. Topological vector spaces. Cambridge University press. 1964.
