SOME PROPERTIES OF LEFT PRODUCT OF TWO SUBCATEGORIES Dumitru BOTNARU*, prof. univ., dr. hab. Alina TURCANU**, lector univ., dr.

*Tiraspol State University

**Technical University of Moldova

Abstract. We study some properties of left product of two subcategories: one coreflective and one reflective in the category of local convex topological vectorial Hausdorff spaces. In this work on examined the situation generated by a structures of factorization $(\mathcal{P}'', \mathcal{I}'')$ with certain properties, allowing to prove that the left product of some coreflective subcategories with any \mathcal{P}'' - reflective subcategory is one and the same. In addition, be indicated examples of coreflectors and reflectors functors which commutes.

Key words: coreflective and reflective subcategory, left product of two subcategories, coreflective subcategory of the topological Mackey spaces, subcategory of spaces with weak topology.

UNELE PROPRIETĂȚI ALE PRODUSULUI DE STÂNGA A DOUĂ SUBCATEGORII

Rezumat. Vom studia unele proprietăți ale produsului de stânga a două subcategorii: una coreflectivă și una reflectivă din categoria spațiilor topologice Hausdorff vectoriale local convexe. În acest articol se va examina situația generată de structurile de factorizare ($\mathcal{P}'', \mathcal{I}''$) cu anumite proprietăți, care va permite să demonstrăm că produsul de stânga a unor subcategorii coreflective cu orice \mathcal{P}'' - subcategorie reflectivă este una și aceiași. În plus, vor fi indicate example de functori coreflectori și reflectori care comută.

Cuvinte cheie: subcategorie coreflectivă și reflectivă , produsul de stânga a două subcategorii, subcategoria coreflectivă a spațiilor topologice Mackey, subcategoria spațiilor cu topologie slabă.

2010 MSC: 46 M 15; 18 B 30.

In category $C_2 \mathcal{V}$ of the local convex topological vectorial Hausdorff spaces are studied the properties of the left product of two subcategories $\mathcal{K} *_s \mathcal{R}$ - one coreflective \mathcal{K} and one reflective \mathcal{R} . On indicate sufficient conditions, that this product should be a coreflective subcategory (Theorem 2). We indicate examples when this product is not a coreflective subcategory (Proposition 1). We denote:

 $\varepsilon \mathcal{R} = \{ e \in \mathcal{E}pi | r(e) \in \mathcal{I}so \}, \text{ and } \mu \mathcal{K} = \{ m \in \mathcal{M}ono \mid k(m) \in \mathcal{I}so \},$

where $r : \mathcal{C}_2 \mathcal{V} \to \mathcal{R}$ and $k : \mathcal{C}_2 \mathcal{V} \to \mathcal{K}$ are the respective functors. It is known that the $((\varepsilon \mathcal{R}) \circ \mathcal{E}_p, ((\varepsilon \mathcal{R}) \circ \mathcal{E}_p^{\downarrow}))$ which we will note $(\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$ or $(\mathcal{P}'', \mathcal{I}'')$ is a structure of factorization in $\mathcal{C}_2 \mathcal{V}$, (to see [1]). Here $(\mathcal{E}_p, \mathcal{M}_u)$ is a structure of factorization defined by class \mathcal{M}_u of universal monomorphisms (to see [1], [4]).

 \mathcal{R} is the smallest element in the class of \mathcal{P}'' -reflective subcategories and there is the smallest element \mathcal{M} in the $\mathbb{K}(\mathcal{I}'')$ class of \mathcal{I}'' -reflective subcategories. For any $\mathcal{K} \in \mathbb{K}(\mathcal{I}'')$ and anything $\mathcal{R}_1 \in \mathbb{R}(\mathcal{P}'')$ we have $\mathcal{K} = \mathcal{K} *_{sr} \mathcal{R}_1$ (Theorem 3). It is demonstrates that $\overline{\mathcal{M}} = \tilde{\mathcal{M}} *_s \mathcal{R}$, where $\tilde{\mathcal{M}}$ is the subcategory of Mackey spaces(Theorem 7). If \mathcal{R} contains subcategory \mathcal{S} of the spaces with weak topology, then functors $\overline{m} : \mathcal{C}_2 \mathcal{V} \longrightarrow \overline{\mathcal{M}}$ and $r : \mathcal{C}_2 \mathcal{V} \longrightarrow \mathcal{R}$ commute: $\overline{m} \cdot r = r \cdot \overline{m}$ (Corollary 2).

We will use the following notation.

The structure of factorization:

 $(\mathcal{E}_u, \mathcal{M}_p) = (\text{the class of universal epimorphisms}, \text{the class of precise monomorphisms})$ = (the class of surjective applications, the class of topological inclusions);

 $(\mathcal{E}_p, \mathcal{M}_u) =$ (the class of precise epimorphisms, the class of universal monomorphisms)(to see [1]);

The coreflective and reflective subcategory:

 $\tilde{\mathcal{M}}$ - the coreflective subcategory of spaces with Mackey topology;

 Σ - the coreflective subcategory of the spaces with the strongest locally convex topology;

 ${\mathcal S}$ - the subcategory of spaces with weak locally convex topology;

 Π - the subcategory of complete spaces with a weak topology;

 \mathbbm{K} - the class of nonzero coreflective subcategories;

 $\mathbbm R$ - the class of nonzero reflective subcategories.

Concerning the notions and notations in category $C_2 \mathcal{V}$ see [6].

Either \mathcal{B} a class of bimorphisms. We denote $\mathbb{K}(\mathcal{B})$, (respectively $\mathbb{R}(\mathcal{B})$) - the class of \mathcal{B} -coreflective subcategories (respectively \mathcal{B} -reflective).

Let \mathcal{K} be is a epicoreflective subcategory, and \mathcal{R} is a monoreflective subcategory of category \mathcal{C} with corresponding functors $k : \mathcal{C} \to \mathcal{K}$ and $r : \mathcal{C} \to \mathcal{R}$. For any object X of category \mathcal{C} either $k^X : kX \to X$ and $r^X : X \to rX$ \mathcal{K} -coreplica and \mathcal{R} -replica to this object. Further, either $r^{kX} : kX \to rkX$ \mathcal{R} -replica of object kX, and $r(k^X) : rkX \to rX$ that unique morphism for which

$$r(k^X) \cdot r^{kX} = r^X \cdot k^X. \tag{1}$$

On morphisms r^X and $r(k^X)$ we build the pull-back square

$$r^X \cdot w^X = r(k^X) \cdot f^X. \tag{2}$$

From equality (1) there exists a morphism t^X so that

$$w^X \cdot t^X = k^X,\tag{3}$$

$$f^X \cdot t^X = r^{kX}.\tag{4}$$

Diagram of the left product (PS)

We denote by $\mathcal{W} = \mathcal{K} *_s \mathcal{R}$ the full subcategory of category \mathcal{C} consisting of all objects isomorphic to objects form wX.

Definition 1. The subcategory $\mathcal{W} = \mathcal{K} *_s \mathcal{R}$ is called the *s*-product or the left product of subcategories \mathcal{K} and \mathcal{R} .

Duality is defined the right product of two subcategories $\mathcal{V} = \mathcal{K} *_d \mathcal{R}$.

Check easy as correspondence $X \mapsto wX$ defines a functor $w : \mathcal{C} \to \mathcal{W}$. We shall say that \mathcal{W} is a coreflective subcategory, if w is an coreflector functor.

Examples have been constructed, showing that the left product of two subcategories is not a coreflective subcategory. Thereby emerged necessity to find sufficient conditions when the left product is a coreflective subcategory. In the paper [3] were established a series of necessary and sufficient conditions for that left product to be a coreflective subcategory.

The following theorems indicates sufficient conditions for that left product to be a coreflective subcategory, and the right product of two subcategories to be a reflective subcategory.

THEOREM 1. 1. Let \mathcal{K} be a \mathcal{M}_u -coreflective subcategory of the category \mathcal{C} . Then for any reflective subcategory \mathcal{R} of the category \mathcal{C} we have:

a) the left product $\mathcal{K} *_s \mathcal{R}$ is a \mathcal{M}_u -coreflective subcategory of category \mathcal{C} ;

b) the right product $\mathcal{K} *_d \mathcal{R}$ is a reflective subcategory of category \mathcal{C} .

1⁰. Let \mathcal{R} be a \mathcal{E}_u -reflective subcategory of category \mathcal{C} . Then for any coreflective subcategory \mathcal{K} of category \mathcal{C} we have:

a) the right product $\mathcal{K} *_d \mathcal{R}$ is a \mathcal{E}_u -reflective subcategory of category \mathcal{C} ;

b) the left product $\mathcal{K} *_{s} \mathcal{R}$ is a coreflective subcategory of category \mathcal{C} .

For the category $C_2 \mathcal{V}$ previous theorem can be formulated as such:

THEOREM 2. 1. Let \mathcal{K} be is a coreflective subcategory of category $\mathcal{C}_2\mathcal{V}$ and $\mathcal{M} \subset \mathcal{K}$. Then for any reflective subcategory \mathcal{R} of category $\mathcal{C}_2\mathcal{V}$ we have:

a) the left product $\mathcal{K} *_s \mathcal{R}$ is a coreflective subcategory of category $\mathcal{C}_2 \mathcal{V}$ and $\tilde{\mathcal{M}} \subset \mathcal{K} *_s \mathcal{R}$;

b) the right product $\mathcal{K} *_d \mathcal{R}$ is a reflective subcategory of category $\mathcal{C}_2 \mathcal{V}$.

1⁰. Let \mathcal{R} be is a reflective subcategory of category $C_2\mathcal{V}$ and $\mathcal{S} \subset \mathcal{R}$. Then for any coreflective subcategory \mathcal{K} of category $C_2\mathcal{V}$ we have:

a) the right product $\mathcal{K} *_d \mathcal{R}$ is a reflective subcategory of category $\mathcal{C}_2 \mathcal{V}$ and $\mathcal{S} \subset \mathcal{K} *_d \mathcal{R}$;

b) the left product $\mathcal{K} *_s \mathcal{R}$ is a coreflective subcategory of category $\mathcal{C}_2 \mathcal{V}$.

The above diagram indicates the cases when the left product is a coreflective subcategory, and cases where the right product is a reflective subcategory. The left product is not always a reflective subcategory. In category $C_2 \mathcal{V}$ and in the category Th of Tihonov spaces there are examples when this product is not a reflective subcategory (see [5]).

PROPOSITION 1. In the category $C_2 \mathcal{V}$

- 1. The right product $\Sigma *_d \Pi$ is not a reflective subcategory.
- 2. The left product $\Sigma *_s \Pi$ is not a coreflective subcategory.

Proof. 1. We build the following diagram for object X does not belong to subcategory Π .

Because π^X is un *mono*, it results as well $\sigma(\pi^X)$ it's the same. Hence $\sigma(\pi^X)$ is sectionalized. So and v^X is sectionalized. If v^X is un *epi*, then it is un *iso*. In this case $\pi^X \in \mathcal{E}_u \cap \mathcal{M}_u$, i.e. π^X is un *iso*.

2. Is demonstrated in an analogous manner. \Box

In cases where the left or right product is not a coreflective (respectively reflective) subcategory recourse is had to the factorization of these products (see [5]).

Let \mathcal{R} be a nonzero reflective subcategory of category $\mathcal{C}_2\mathcal{V}$, for which we fix the structure of factorization $(\mathcal{P}'', \mathcal{I}'') = (\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$, where $\mathcal{P}''(\mathcal{R}) = (\varepsilon \mathcal{R}) \circ \mathcal{E}_p$ (see [1]). This structure divides both the lattice \mathbb{K} of nonzero coreflective subcategories, as well as lattice \mathbb{R} of nonzero reflective subcategories in three classes:

 $\mathbb{K} - \mathbb{K}(\mathcal{P}''), \mathbb{K}(\mathcal{I}''), \mathbb{K}(\mathcal{P}'', \mathcal{I}'');$

 $\mathbb{R} - \mathbb{R}(\mathcal{P}''), \mathbb{R}(\mathcal{I}''), \mathbb{R}(\mathcal{P}'', \mathcal{I}'').$

where $\mathbb{K}(\mathcal{P}'') = \{\mathcal{K} \in \mathbb{K} | \mathcal{K} \text{ is } \mathcal{P}''\text{-coreflective}\}, \mathbb{K}(\mathcal{I}'') = \{\mathcal{K} \in \mathbb{K} | \mathcal{K} \text{ is } \mathcal{I}''\text{-coreflective}\}, \mathbb{K}(\mathcal{P}'', \mathcal{I}'') = \{\mathbb{K} \setminus (\mathbb{K}(\mathcal{P}'') \cup \mathbb{K}(\mathcal{I}''))\} \cup \{\mathcal{C}_2 \mathcal{V}\}, \text{ and analogue division of lattice } \mathbb{R}.$ LEMMA 1. $\mathbb{K}(\mathcal{I}'') \subset \mathbb{K}(\mathcal{M}_u).$

Proof. Because $\mathcal{I}'' \subset \mathcal{M}_u$, it follows that any \mathcal{I}'' -coreflective subcategory it is also \mathcal{M}_u -coreflective. It remains to be remembered that $\tilde{\mathcal{M}}$ is the smallest element in the class $\mathbb{K}(\mathcal{M}_u)$. \Box

Thus class $\mathbb{K}(\mathcal{I}'')$ possess the smallest element that we will write $\overline{\mathcal{M}}$ and the class $\mathbb{R}(\mathcal{P}'')$ - the smallest element \mathcal{R} . The $\overline{\mathcal{M}}$ -coreplique of an object X is obtained by performing $(\mathcal{P}'', \mathcal{I}'')$ -factorization of the Σ -coreplique $\sigma^X : \sigma X \to X$

Then i^X is $\overline{\mathcal{M}}$ -coreplica of the object X.

LEMMA 2. Let $\mathcal{K} \in \mathbb{K}$ be a coreflective subcategory for which the product $\mathcal{K}_{*s}\mathcal{R}$ is a coreflective subcategory, and $(\mathcal{P}'', \mathcal{I}'') = (\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$. The following statements are equivalent:

- 1. $\mathcal{K} \in \mathbb{K}(\mathcal{M}_u)$.
- 2. $\mathcal{K} *_s \mathcal{R} \in \mathbb{K}(\mathcal{I}'').$

Proof. $1 \Rightarrow 2$. Because $\tilde{\mathcal{M}} \subset \mathcal{K}$, the product $\mathcal{K} *_s \mathcal{R}$ is a coreflective subcategory (Theorem 2). Let's build the diagram (PS) for un arbitrary object X of category $\mathcal{C}_2 \mathcal{V}$.

In equality

$$k^X = w^X \cdot t^X \tag{1}$$

 $k^X \in \mathcal{M}_u$, and $t^X \in \mathcal{E}pi$. Because class \mathcal{M}_u is $\mathcal{E}pi$ -cohereditary (see [1]), we deduce that $w^X \in \mathcal{M}_u$. So

$$r^X \cdot w^X = r(k^X) \cdot r^{wX},\tag{2}$$

is an pull-back square and $w^X \in \mathcal{M}_u$. According to the Theorem 7.3 [4] $w^X \in \mathcal{I}'' = \mathcal{I}''(\mathcal{R})$. 2 \Rightarrow 1. In equality

$$r^{kX} = r^{wX} \cdot t^X \tag{3}$$

 $r^{kX} \in \mathcal{M}_u$. So and $t^X \in \mathcal{M}_u$. Thus $w^X \in \mathcal{I}'' \subset \mathcal{M}_u$ and $t^X \in \mathcal{M}_u$. From equality (1) it results that $k^X \in \mathcal{M}_u$. \Box

THEOREM 3. Let \mathcal{K} be a coreflective subcategory of category $\mathcal{C}_2\mathcal{V}$, $\tilde{\mathcal{M}} \subset \mathcal{K}$, and $(\mathcal{P}'', \mathcal{I}'') = (\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$. Then the following statements are equivalent:

- 1. $\mathcal{K} \in \mathbb{K}(\mathcal{I}'')$.
- 2. $\mathcal{K} = \mathcal{K} *_s \mathcal{R}$.

3. For any element $\mathcal{R}_1 \in \mathbb{R}(\mathcal{P}'')$, we have $\mathcal{K} = \mathcal{K} *_s \mathcal{R}_1$.

Proof. We will demonstrate the following implications: $1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1$.

 $1 \Longrightarrow 2$. For arbitrary object X of the category $\mathcal{C}_2 \mathcal{V}$ let $k^X : kX \to X \mathcal{K}$ -coreplica be, and $r^X : X \to rX$ and $r^{kX} : kX \to rkX$ the \mathcal{R} -replicas of the respectively objects. We have the commutative square

$$r^X \cdot k^X = r(k^X) \cdot r^{kX}.$$
(1)

Because $\mathcal{K} \in \mathbb{K}(\mathcal{I}'')$, it results that $k^X \in \mathcal{I}''$, and the square (1) is pull-back (Theorem 7.3 [4]). So $\mathcal{K} = \mathcal{K} *_s \mathcal{R}$.

 $2 \implies 3$. Let $\mathcal{K} = \mathcal{K} *_s \mathcal{R}$ and $\mathcal{R}_1 \in \mathbb{R}(\mathcal{P}'')$ be. For the object $X \in |\mathcal{C}_2 \mathcal{V}|$ let be $k^X : kX \to X$ \mathcal{K} -coreplica, $r_1^X : X \to r_1 X$ and $r_1^{kX} : kX \to r_1 kX \mathcal{R}_1$ -replicas of respective objects, and $r^X : X \to rX$ and $r^{kX} : kX \to rkX \mathcal{R}$ -replicas of respective objects. Because $\mathcal{R} \subset \mathcal{R}_1$ we deduce that

$$r^{kX} = f^{r_1kX} \cdot r_1^{kX},\tag{2}$$

$$r^X = f^{r_1 X} \cdot r_1^X, \tag{3}$$

for two morphisms f^{r_1kX} si f^{r_1X} . We still have the equals:

$$r_1^X \cdot k^X = r_1(k^X) \cdot r_1^{kX},$$
 (4)

$$r^X \cdot k^X = r(k^X) \cdot r^{kX}.$$
(5)

From these results we have and the equality

$$f^{r_1X} \cdot r_1(k^X) = r(k^X) \cdot f^{r_1kX}.$$
 (6)

According to the hypothesis, the square (5) is pull-back, and in this diagram all morphisms are bimorphisms. It is easy to check that square (4) is also pull-back.

 $3 \Longrightarrow 1$. Because $\mathcal{K} = \mathcal{K} *_s \mathcal{R}$, it results that the square

$$r^X \cdot k^X = r(k^X) \cdot r^{kX} \tag{7}$$

is pull-back. On the other hand $\tilde{\mathcal{M}} \subset \mathcal{K}$. So $k^X \in \mathcal{M}_u$. Therefore $k^X \in \mathcal{I}''$, and $\mathcal{K} \in \mathbb{K}(\mathcal{I}'')$. \Box

The reflective subcategory \mathcal{R} establishes the following relationship of \mathcal{R} -equivalence in the class $\mathbb{K}(\mathcal{M}_u)$: $\mathcal{K}_1 \sim_{\mathcal{R}} \mathcal{K}_2 \iff \mathcal{K}_1 *_s \mathcal{R} = \mathcal{K}_2 *_s \mathcal{R}$. From Lemma 2 and the fact that $(\mathcal{K} *_s \mathcal{R}) *_s \mathcal{R} = \mathcal{K} *_s \mathcal{R}$ ([3], Proposition 4.2) We infer that any element of the lattice $\mathbb{K}(\mathcal{M}_u)$ Is equivalent to an element of the lattice $\mathbb{K}(\mathcal{I}'')$. Further,

$$\mathcal{K} \subset \mathcal{K} *_s \mathcal{R}$$

So $\mathcal{K} *_s \mathcal{R}$ is the biggest element in its equivalence class $\mathbb{A}(\mathcal{K})$.

LEMMA 3. Let \mathbb{A} be a class of \mathcal{R} -equivalence elements. Then \mathcal{W} is the biggest element in the class \mathbb{A} , where $\mathcal{W} = \mathcal{K} *_s \mathcal{R}$ with $\mathcal{K} \in \mathbb{A}$. \Box

LEMMA 4. Let $\mathcal{K}_1 \sim_{\mathcal{R}} \mathcal{K}_2$ and $\mathcal{K}_1 \subset \mathcal{K} \subset \mathcal{K}_2$ be. Then $\mathcal{K}_1 \sim_{\mathcal{R}} \mathcal{K} \sim_{\mathcal{R}} \mathcal{K}_2$.

Let \mathbb{A} be a class of \mathcal{R} -equivalence elements with the biggest element \mathcal{W} . According mentioned above for any element $\mathcal{K} \in \mathbb{A}$ we have

$$rkX \sim rwX, \forall X \in |\mathcal{C}_2\mathcal{V}|.$$

Let be

$$\mathcal{A}' = \cap \{\mathcal{K} | \mathcal{K} \in \mathbb{A}\}.$$

 \mathcal{A}' is a coreflective subcategory and because $\tilde{\mathcal{M}} \subset \mathcal{K}$ for any $\mathcal{K} \in \mathbb{A}$, we deduced that $\tilde{\mathcal{M}} \subset \mathcal{A}'$. It is evident, the class \mathbb{A} possesses the smallest element, iff $\mathcal{A}' \in \mathbb{A}$. LEMMA 5. Let $\mathcal{A}' \in \mathbb{A}$ be. Then $\mathbb{A} = \{\mathcal{K} \in \mathbb{K}(\mathcal{M}_u) | \mathcal{A}' \subset \mathcal{K} \subset \mathcal{W}\}$, where $\mathcal{W} = \mathcal{A}' *_s \mathcal{R}.\Box$

The following result chows that the smallest element $\overline{\mathcal{M}}$ of the class $\mathbb{K}(\mathcal{I}''(\mathcal{R}))$ can also be obtained as a left product, without resorting to the factorization structure $(\mathcal{P}'', \mathcal{I}'') = (\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R})).$

THEOREM 4. $\overline{\mathcal{M}} = \tilde{\mathcal{M}} *_s \mathcal{R}.$

Proof. We build the diagram (PS) for an arbitrary object X of category $C_2 \mathcal{V}$ and for subcategories $\tilde{\mathcal{M}}$ and \mathcal{R} .

We write the respectively equality

$$r^X \cdot m^X = r(m^X) \cdot r^{mX},\tag{1}$$

where $m^X : mX \to X$, is $\tilde{\mathcal{M}}$ -coreplicated of object X, and r^X and r^{mX} - \mathcal{R} -replicated respective objects and equality (1) takes place for a morphism $r(m^X)$.

$$r^X \cdot w^X = r(m^X) \cdot f^X \tag{2}$$

is the pull-back square built on morphisms r^X and $r(m^X)$. Then

$$m^X = w^X \cdot t^X,\tag{3}$$

$$r^{mX} = f^X \cdot t^X,\tag{4}$$

for a morphism t^X . We have r^X , $m^X \in \mathcal{M}_u$ and from equality (1) it results that $r(m^X) \cdot r^{mX} \in \mathcal{M}_u$.

Because class \mathcal{M}_u is $\mathcal{E}pi$ -cohereditary (see [1]) and $r^X \in \mathcal{E}pi$, we deduce that $r(m^X) \in \mathcal{M}_u$. Then in pull-back square (2) it results that $w^X \in \mathcal{M}_u$, and from equality (3) we deduce that $w^X \in \mathcal{E}_u$. So in equality (3) all morphisms belong to the class $\mathcal{E}_u \cap \mathcal{M}_u$. As mentioned above (see [3]) f^X is the \mathcal{R} -replica of object wX, and $r(m^X) = r(w^X)$. So square

(2) is pull-back, and $w^X \in \mathcal{M}_u$. According to the Theorem 7.3 [4] $w^X \in \mathcal{I}''(\mathcal{R})$. Further, t^X is un epi. Then from equality (4) results that $t^X \in \mathcal{E}\mathcal{R}$. Because $\mathcal{P}''(\mathcal{R}) = (\mathcal{E}\mathcal{R}) \circ \mathcal{E}_p$ we deduce that $t^X \in \mathcal{P}''(\mathcal{R})$. So we get that (3) is $(\mathcal{P}'', \mathcal{I}'')$ -factoring morphism m^X , and the coreflective subcategory $\mathcal{W} = \tilde{\mathcal{M}} *_s \mathcal{R}$ is equal to the subcategory $\overline{\mathcal{M}}$. \Box

COROLLARY 1. 1. Class $\mathbb{A}(\tilde{\mathcal{M}})$ of elements in $\mathbb{K}(\mathcal{M}_u)$ \mathcal{R} -equivalents with element $\tilde{\mathcal{M}}$ possesses the biggest element $\overline{\mathcal{M}} = \tilde{\mathcal{M}} *_s \mathcal{R}$, and

$$\mathbb{A}(\tilde{\mathcal{M}}) = \{ \mathcal{K} \in \mathbb{K}(\mathcal{M}_u) | \tilde{\mathcal{M}} \subset \mathcal{K} \subset (\mathcal{M} *_s \mathcal{R}) \}.$$

2. Because $C_2 \mathcal{V} *_s \mathcal{R} = C_2 \mathcal{V}$ the class of elements \mathcal{R} -echivalents with $C_2 \mathcal{V}$ contains one single element $C_2 \mathcal{V}$. \Box

From the previous results, we have the following presentation of the latice $\mathbb{K}(\mathcal{M}_u)$ and the classes of \mathcal{R} -equivalence.

Let's highlight how the application $*_s \mathcal{R}$ works on the class $\mathbb{K}(\mathcal{M}_u)$.

Let $\mathcal{R} \in \mathbb{R}$ be. This reflective subcategory generating the factorization structure $(\mathcal{P}'', \mathcal{I}'') = (\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$. Respectively, this structure divides the lattice \mathbb{K} of nonzero coreflective subcategories into three classes:

 $\mathbb{K} - \mathbb{K}(\mathcal{P}''), \ \mathbb{K}(\mathcal{I}''), \ \mathbb{K}(\mathcal{P}'', \mathcal{I}'').$

Remark 1. 1. Always $\mathbb{K}(\mathcal{I}''(\mathcal{R})) \subset \{\mathcal{T} \in \mathbb{K} | \overline{\mathcal{M}} \subset \mathcal{T}\}$. But these classes may be different.

2. $\mathbb{R}(\mathcal{P}''(\mathcal{R})) = \{\mathcal{H} \in \mathbb{R} | \mathcal{R} \subset \mathcal{H}\}.$

3. Let $\mathcal{T}, \mathcal{T}_1 \in \mathbb{R}(\mathcal{M}_u), \mathcal{T} \subset \mathcal{T}_1 \subset \mathcal{T} *_s \mathcal{R}$ be. Then $\mathcal{T} *_s \mathcal{R} = \mathcal{T}_1 *_s \mathcal{R}$ (see[3]).

THEOREM 5. Let \mathcal{R} be a reflective subcategory of category $\mathcal{C}_2\mathcal{V}$, and $(\mathcal{P}'', \mathcal{I}'') = (\mathcal{P}''(\mathcal{R}), \mathcal{I}''(\mathcal{R}))$. Then:

1. $\mathcal{K} *_s \mathcal{R} \in \mathbb{K}(\mathcal{I}'') \Leftrightarrow \mathcal{K} \in \mathbb{K}(\mathcal{M}_u).$

2. $\mathcal{K} *_s \mathcal{R} = \mathcal{K} \Leftrightarrow \mathcal{K} \in \mathbb{K}(\mathcal{I}'').$

3. For any $\mathcal{K} \in \mathbb{A}(\tilde{\mathcal{M}})$ and all $\mathcal{T} \in \mathbb{R}(\mathcal{I}'')$ it takes place equality $\mathcal{K} *_s \mathcal{T} = \tilde{\mathcal{M}} *_s \mathcal{R}.\square$ Let $\mathcal{R}_1 \subset \mathcal{R}_2$ be two elements of the lattice \mathbb{R} . Then $\mathcal{I}''(\mathcal{R}_1) \subset \mathcal{I}''(\mathcal{R}_2)$, and

 $\mathcal{P}''(\mathcal{R}_2) \subset \mathcal{P}''(\mathcal{R}_1)$. There is the following relationship between these classes.

THEOREM 6. Let $\mathcal{K} \in \mathbb{K}$, $\mathcal{R} \in \mathbb{R}$ and $\varepsilon \mathcal{R} \subset \mu \mathcal{K}$ be. Then:

1. $S \subset \mathcal{R}$.

2. The functor $w : \mathcal{C}_2 \mathcal{V} \to \mathcal{K} *_s \mathcal{R}$ is an reflector functor.

3. The functors $w : \mathcal{C}_2 \mathcal{V} \to \mathcal{K} *_s \mathcal{R}$ and $r : \mathcal{C}_2 \mathcal{V} \to \mathcal{R}$ commute: $w \cdot r = r \cdot w$.

Proof. 1. Because $\mu \mathcal{K} \subset \mathcal{E}_u$ it results that $\varepsilon \mathcal{R} \subset \mathcal{E}_u$, The conditions $\varepsilon \mathcal{R} \subset \mathcal{E}_u$ and $S \subset \mathcal{R}$ are equivalents.

2. It results from Theorem 2.

3. We examine the Diagram (PS) for subcategory $(\mathcal{K}, \mathcal{R})$ (see the Diagram from Lemma 2). We have rwX = rkX. Further, krX = kX, since $\mathcal{E}\mathcal{R} \subset \mu\mathcal{K}$. Because $r^{rX} = 1$, it follows that $f^{rX} = 1$, or $w^{rX} = 1$. Therefore wrX = rkrX = rkX. \Box

COROLLARY 2. Either the subcategory \mathcal{R} is \mathcal{E}_u -reflective $(S \subset \mathcal{R})$. Then the coreflector functor $\overline{m} : \mathcal{C}_2 \mathcal{V} \longrightarrow \overline{\mathcal{M}}$ and the reflector $r : \mathcal{C}_2 \mathcal{V} \longrightarrow \mathcal{R}$ commute: $\overline{m} \cdot r = r \cdot \overline{m}$. \Box

Analogue takes place transformation of the class $\mathbb{R}(\mathcal{E}_u)$ (class of \mathcal{E}_u -reflective subcategories) by the right product.

Example 1. We denote $\mathbb{R}(\mathcal{S}) = \{\mathcal{L} \in \mathbb{R} | \mathcal{L} \subset \mathcal{S}. \text{ Let } \mathcal{L} \in \mathbb{R}(\mathcal{S})\}$ be. Then

- 1. $\mathcal{I}''(\mathcal{L}) \subset \mathcal{I}''(\mathcal{S}) = \mathcal{M}_p.$
- 2. $\mathbb{K}(\mathcal{I}''(\mathcal{L})) = \{\mathcal{C}_2\mathcal{V}\}$. $\mathbb{K}(\mathcal{P}''(\mathcal{L})) = \mathbb{K}$. $\mathbb{K}(\mathcal{P}'', \mathcal{I}'') = \{\mathcal{C}_2\mathcal{V}\}$

Example 2. Let $\mathcal{R} \in \mathbb{R}(\mathcal{M}_p)$ be. Then $\mathcal{P}''(\mathcal{R}) = (\varepsilon \mathcal{R}) \circ \mathcal{E}_p$, where $(\varepsilon \mathcal{R}) \subset \mathcal{M}_p$, and $\mathbb{K}(\mathcal{P}''(\mathcal{R})) = \mathbb{K}(\mathcal{E}_p)$.

Class $\mathbb{K}(\mathcal{E}_p)$ contains the element $\mathcal{C}_2\mathcal{V}$ and with each element contains the bigger elements of the lattice \mathbb{K} .

Problem. The class $\mathbb{K}(\mathcal{E}_p)$ contains other elements, except the element $\{\mathcal{C}_2\mathcal{V}\}$? LEMMA 6. Let $\mathcal{R} \in \mathbb{R}(\mathcal{M}_p)$ be $(\Gamma_0 \subset \mathcal{R})$. Then $(\varepsilon \mathcal{R}) \perp (\mathcal{E}_u \cap \mathcal{M}_u)$. COROLLARY 3. Let $\mathcal{R} \in \mathbb{R}(\mathcal{M}_p)$ be. Then $\mathbb{K}(\mathcal{I}''(\mathcal{R})) = \{\mathcal{C}_2\mathcal{V}\}$. PROPOSITION 2. Let $\mathcal{K} \subset \widetilde{\mathcal{M}}$ and $\mathcal{K} \neq \widetilde{\mathcal{M}}$ be. Then $\mathcal{K} \in \mathbb{K}(\mathcal{P}, \mathcal{I})$.

$$kX \xrightarrow{v_c^X} mX \xrightarrow{m^X} X$$

Proof. Let $m^X : mX \to X$ be the $\tilde{\mathcal{M}}$ -coreplica of X, and $v_c^X : kX \to mX$ \mathcal{K} -coreplica of mX. There exist an object X so that v_c^X is not isomorphism. So $m^X \cdot v_c^X$ does not belong to the class \mathcal{M}_u and $m^X \cdot v_c^X$ does not belong to the class \mathcal{E}_p , because m^X would be an isomorphism. \Box

Example 3. Let $\mathcal{L} \in \mathbb{R} \setminus (\mathbb{R}(S) \cup \mathbb{R}(\mathcal{M}_p))$ be, and $\mathcal{P}''(\mathcal{L}) = (\varepsilon \mathcal{L}) \circ \mathcal{E}_p$. So $\mathcal{P}''(\mathcal{L})$ intersects with $\mathcal{M}_u: \mathcal{P}''(\mathcal{L}) \cap \mathcal{M}_u = \varepsilon \mathcal{L}$. So here it results that $\mathbb{K}(\mathcal{P}''(\mathcal{L})) \cap \mathbb{K}(\mathcal{M}_u)$ may contain other elements except the element $\mathcal{C}_2 \mathcal{V}$.

References

- Botnaru D. Structures bicatégorielles complémentaires. In: ROMAI Journal, V.5, N 2, 2009. p. 5-27.
- Botnaru D., Cerbu O. Semireflexive product of two subcategories. In: Proc. of the Sixth Congress of Romanian Mathematicians. Bucharest, V.1, 2007. p. 5-19.
- Botnaru D., Ţurcanu A. Les produits de gauche et de droite de deux souscategories. In: An. Universitatii de Stat Tiraspol: Acta et Coment., VIII. Chisinau: UST, 2003. p. 57-73.
- Botnaru D., Ţurcanu A. On Giraud subcategories in locally convex space. In: ROMAI Journal, V.I, N 1, 2005. p. 7-30.
- Botnaru D., Ţurcanu A. The Hewitt spaces as right factorized product of two subcategories. In: Buletinul Institutului Politehnic din Iaşi, Tomul LVII (LXI), Fasc. 1, 2011. p. 37-46.
- Robertson A. P., Robertson W. J. Topological vector spaces. Cambridge University press. 1964.