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Invariant conditions of stability of unperturbed motion

governed by some differential systems in the plane
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Abstract. Center-affine invariant conditions of the stability of unperturbed motion
were determined for differential systems in the plane with polynomial nonlinearities
in non-critical cases and for differential systems in the plane with polynomial nonlin-
earities up to the fourth degree inclusive in critical cases.
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Introduction

Problems which require a general formulation of stability not only of equilibrium
but also of motion arose in science and technics in the middle of XIX-th century.

Lyapunov (1857-1918) published his PhD thesis concerning the stability of mo-
tion in 1892, and it was translated into French and published in France in 1907.
According to the French version, this work was reprinted in Russian, with some
additions, in his collection of works [1] in 1956. The mentioned work contains many
fruitful ideas and results of great importance. All the history related to the the-
ory on stability of motion is considered to be divided into periods before and after
Lyapunov.

First of all, A.M. Lyapunov gave a strict definition of the stability of motion,
which was so successful that all scientists took it as fundamental one for their re-
searches.

A lot of papers were written in the field of stability of motion. The universal
scientific literature concerning the stability of motion contains thousands of papers,
including hundreds of monographs and textbooks of many authors. This literature
is rich in the development of this theory, as well as in its applications in practice.

Note that many problems on stability treated in these works are governed by
two-dimensional (or multidimensional) autonomous polynomial differential systems.
Methods of the theory of invariants for such systems were elaborated in the school
of differential equations from Chişinău. Moreover, the theory of Lie algebras and
Sibirsky graded algebras with applications in the qualitative theory of these equa-
tions [2–7] there were developed.

The stability of unperturbed motions using the theory of algebras, of invariants
and of Lie algebras was studied for the first time in [8]. In this paper, the similar
investigations are done for two-dimensional differential systems with polynomial
nonlinearities.
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1 Definition of stability of unperturbed motion and of critical

system

We consider the two-dimensional differential system with polynomial nonlinear-
ities of perturbed motion (see, for example, [1] or [9]) of the form

dxj

dt
= aj

αx
α +

l
∑

i=1

aj
α1α2...αmi

xα1xα2 . . . xαmi (j, α, α1, . . . , αmi
= 1, 2; l <∞), (1)

where aj
α1α2...αmi

is a symmetric tensor in lower indices in which the total convolution
is done and Γ = {m1,m2, . . . ,ml} (mi ≥ 2) is a finite set of distinct natural numbers.
Coefficients and variables in (1) are given over the field of real numbers R.

The system of the first approximation ([1], [9])

dxj

dt
= aj

αx
α (j, α = 1, 2) (2)

plays an important role in studying differential systems (1). As it follows from [1]
(or [9]), to unperturbed motion of system (1) the zero values of variables xj(t)
(j = 1, 2) correspond. Taking into account this fact, we have the following definition
of stability by Lyapunov [9] :

If for any small positive value ε, however small, one can find a positive number
δ such that for all perturbations xj(t0) satisfying the condition

2
∑

j=1

(xj(t0))
2 ≤ δ, (3)

the inequality
2

∑

j=1

(xj(t))2 < ε

is valid for any t ≥ t0, then the unperturbed motion xj = 0 (j = 1, 2) is called stable,
otherwise it is called unstable.

If the unperturbed motion is stable and the number δ can be found however
small such that for any perturbed motions satisfying (3) the condition

lim
t→∞

2
∑

j=1

(xj(t))2 = 0,

is valid, then the unperturbed motion is called asymptotically stable.
Inspired by the work [1] we have

Definition 1. The differential system (1) with polynomial nonlinearities will be
called a critical system of Lyapunov type if the characteristic equation of the system
of the first approximation (2) has one zero root and all other roots have negative real
parts. When the real parts of the roots of the characteristic equation are different
from zero, the system (1) will be called non-critical.
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First, we will examine the non-critical case.

Lemma 1. The characteristic equation of system (1) and (2) is

̺2 + L1,2̺+ L2,2 = 0, (4)

where the coefficients in (4) are center-affine invariants [2] and have the form

L1,2 = −I1, L2,2 =
1

2
(I2

1 − I2) (5)

with

I1 = aα
α, I2 = aα

βa
β
α. (6)

By means of the Lyapunov theorems on stability of unperturbed motion in the
first approximation (2), the Hurwitz theorem on the signs of the roots of an algebraic
equation (see, for example, [9]) and using Lemma 1 we have

Theorem 1. Assume that the center-affine invariants (5) of system (1) satisfy the
inequalities L1,2 > 0, L2,2 > 0. Then the unperturbed motion x1 = x2 = 0 of this
system is asymptotically stable.

Theorem 2. If at least one of the center-affine invariant expressions (5) of system
(1) is negative, then the unperturbed motion x1 = x2 = 0 of this system is unstable.

2 Canonical form of a critical system of Lyapunov type

Remark 1. In the following, we will study critical systems of Lyapunov type in the
first case, and such systems will be called critical systems or critical systems of
Lyapunov type.

Lemma 2. The characteristic equation of system (2) (and therefore of system (1))
has one zero root and the other ones real and negative if and only if the following
invariant conditions

I2
1 − I2 = 0, I1 < 0 (7)

hold, where I1 and I2 are from (6).

The proof of Lemma 2 follows from the fact that the characteristic equation of
system (2) and therefore of (1) has the form (4)–(5).

From [1] it follows

Lemma 3. Let for system (2) (for (1)) the invariant conditions (7) hold. Then the
system (2) by a center-affine transformation can be brought to the form

dx1

dt
= 0,

dx2

dt
= a2

αx
α (α = 1, 2) (8)
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and, therefore, the system (1) can be written in the form

dx1

dt
=

l
∑

i=1

a1
α1α2...αm

i

xα1xα2 . . . xαm
i ,

dx2

dt
= a2

αx
α +

l
∑

i=1

a2
α1α2...αmi

xα1xα2 . . . xαmi (α,α1, . . . , αmi
= 1, 2; l <∞).

(9)

Remark 2. The system (9) is called the canonical form of a critical system of Lya-
punov type (1), where the first equation from (9) is called the critical equation and
the second one – the non-critical equation.

For the case examined in this paper the Lyapunov’s Theorem [1, §32] can be
written in the following form:

Theorem 3. Let the characteristic equation of the matrix of linear part of differen-
tial system with polynomial nonlinearities have one zero root and other roots have
negative real parts. Assume that the differential system of the perturbed motion (1)
was brought to the form (9) and consider the equation

a2
αx

α +

l
∑

i=1

a2
α1α2...αmi

xα1xα2 . . . xαmi = 0 (α,α1, α2, . . . , αmi
= 1, 2; l <∞) (10)

from which we determine the variable x2 as a holomorphic function of the variable
x1, vanishing for x1 = 0 (such determination of x2 is always possible and is unique).
Substitute the determined values into the polynomial

l
∑

i=1

a1
α1α2...αmi

xα1xα2 . . . xαmi (α1, α2, . . . , αmi
= 1, 2; l <∞).

If the obtained result is not identically zero, then we can develop it in an increas-
ing powers series of x1. When the lowest power of x1 in this development is even,
then the unperturbed motion is unstable. When the lowest power of x1 is odd, then
the unperturbed motion depends on the sign of the coefficient of x1. The unperturbed
motion will be unstable when this coefficient is positive and will be stable when the
coefficient is negative. In the last case, any perturbed motion that corresponds to
small enough perturbation will approach asymptotically the unperturbed motion.

If the obtained result is identically zero, then there exists a continuous series
of stabilized motions to which the examined unperturbed motion belongs. All the
motions of this series, close enough to the unperturbed motions, including the last
one, will be stable. In this case, for small enough perturbations, any perturbed motion
will tend asymptotically to one of the stabilized motions of the mention series.
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3 Center-affine invariant conditions of stability of unperturbed

motion for the system with quadratic nonlinearities

We examine the differential system with quadratic nonlinearities

dxj

dt
= aj

αx
α + a

j
αβx

αxβ (j, α, β = 1, 2), (11)

where aj
αβ is a symmetric tensor in lower indices in which the total convolution is

done.
It was shown in [4] that the set of unimodular comitants and invariants of the

system (1) consists of some graded algebras, which in [7] were called the Sibirsky
algebras. For system (11) these algebras were denoted in [4] by S1,2 – the Sibirsky
algebras of comitants and SI1,2 – the Sibirsky algebras of invariants.

It was shown in [4] that the set of generators of these algebras (which is fi-
nite) consists of polynomial bases of the homogeneous center-affine comitants and
invariants.

Based on this and on the polynomial bases of the center-affine comitants and
invariants of system (11) given in [2], we can write the Sibirsky algebra in the form

S1,2 =< I1, I2, . . . , I16,K1,K2, . . . ,K20 | f1, f2, . . . , f27 >

and
SI1,2 =< I1, I2, . . . , I16 | f1, f2, . . . , f9 >,

where Ir and Ks are the invariants and the comitants of these algebras, and fj are
their syzygies.

Later on, we will use the following generators of the Sibirsky algebras of system
(11), for which their tensorial forms from [2] are written as follows:

I1 = aα
α, I2 = aα

βa
β
α, I5 = aα

p a
β
γqa

γ
αβε

pq, K1 = aα
αβx

β, K2 = ap
αx

αxqεpq,

K3 = aα
βa

β
αγx

γ , K4 = aα
γa

β
αβx

γ , K5 = a
p
αβx

αxβxqεpq, K7 = aα
βγa

β
αδx

γxδ,

K8 = aα
γa

β
δ a

γ
αβx

δ, K11 = ap
αa

α
βγx

βxγxqεpq, K12 = aα
βa

β
αγa

γ
δµx

δxµ,

K13 = aα
γa

β
αβa

γ
δµx

δxµ,

(12)

where εpq(εpq) is the unit bivector with coordinates ε11 = ε22 = 0, ε12 = −ε21 =
1 (ε11 = ε22 = 0, ε12 = −ε21 = 1).

Suppose the system (11) is critical of Lyapunov type. Then by Lemma 3 it can
be brought to the canonical form (9)

dx1

dt
= a1

αβx
αxβ,

dx2

dt
= a2

αx
α + a2

αβx
αxβ (α, β = 1, 2). (13)

According to Theorem 3, we examine the equation (10) provided by non-critical
equation of (13), which in the expanded form looks as

a2
1x

1 + a2
2x

2 + a2
11(x

1)2 + 2a2
12x

1x2 + a2
22(x

2)2 = 0. (14)
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In this case, under the conditions (5)–(6) and the inequality from (7) we have

I1 = a2
2 < 0. (15)

Then from (14) we can write

x2 = −
a2

1

a2
2

x1 −
a2

11

a2
2

(x1)2 −
2a2

12

a2
2

x1x2 −
a2

22

a2
2

(x2)2. (16)

By Theorem 3, we seek x2 as a holomorphic function of x1. Then we can write

x2 = −
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 +B4(x
1)4 + · · · (17)

Substituting (17) into (16) we get

−
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · = −
a2

1

a2
2

x1 −
a2

11

a2
2

(x1)2 −
2a2

12

a2
2

x1[−
a2

1

a2
2

x1+

+B2(x
1)2 +B3(x

1)3 + · · · ] −
a2

22

a2
2

[−
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · ]2.

This implies that

B2(x
1)2 +B3(x

1)3 +B4(x
1)4 + · · · = [−

a2
11

a2
2

+
2a2

1a
2
12

(a2
2)

2
−

(a2
1)

2a2
22

(a2
2)

3
](x1)2+

+[−
2a2

12

a2
2

B2 +
2a2

1a
2
22

(a2
2)

2
B2](x

1)3 + [−
2a2

12

a2
2

B3 −
a2

22

a2
2

B2
2 + 2

a2
1a

2
22

(a2
2)

2
B3](x

1)4 + · · ·

and we obtain

B2 =
1

(a2
2
)3

[−(a2

2
)2a2

11
+ 2a2

1
a2

2
a2

12
− (a2

1
)2a2

22
], B3 =

2

(a2
2
)2

(−a2

2
a2

12
+ a2

1
a2

22
)B2,

B4 =
1

(a2
2
)2

[−a2

2
a2

22
B2

2
+ 2(a2

1
a2

22
− a2

2
a2

12
)B3], . . .

(18)

Substituting (17) into the right-hand side of the critical differential equation (13)
we have

a1
11(x

1)2 + 2a1
12x

1x2 + a1
22(x

2)2 = A2(x
1)2 +A3(x

1)3 +A4(x
1)4 + · · ·

or in the expanded form we get

a1
11(x

1)2 + 2a1
12x

1[−
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · ]+

+a1
22[−

a2
1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · ]2 = A2(x
1)2 +A3(x

1)3 +A4(x
1)4 + · · · .
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This implies that

A2 =
1

(a2
2)

2
[(a2

2)
2a1

11 − 2a2
1a

2
2a

1
12 + (a2

1)
2a1

22],

A3 =
2

a2
2

(a2
2a

1
12 − a2

1a
1
22)B2, A4 =

2

a2
2

(a2
2a

1
12 − a2

1a
1
22)B3 + a1

22B
2
2 , . . .

(19)

By Theorem 3, to determine the stability of the unperturbed motion described
by system (13), it is necessary to study the expressions (19).

Let us introduce the following notations

P = (a2
2)

2a1
11 − 2a2

1a
2
2a

1
12 + (a2

1)
2a1

22, Q = (a2
2)

2a2
11 − 2a2

1a
2
2a

2
12 + (a2

1)
2a2

22,

R = (a2
2)

2a1
11 − (a2

1)
2a1

22, S = a2
1a

1
22 − a2

2a
1
12

(20)

and take into account that according to (15) we have a2
2 < 0.

Next, we observe that the stability of the unperturbed motion can occur when
A2=0 from (19), i.e. when P = 0 from (20).

Assume in (18) that B2 = 0, then (20) yields Q = 0. This implies that all
B3, B4, ... are equal to zero. From this it follows that all the coefficients A3, A4, ...

vanish and therefore the stability of the unperturbed motion holds.

Suppose B2 6= 0. If S 6= 0, then the stability of the unperturbed motion is
determined by the sign of A3 from (19). If in (20) S = 0, then A3 = 0 and the
coefficient A4 from (19) is non-zero if a1

22 6= 0. Therefore, the stability is possible
only if a1

22 = 0. Observe that when S = P = 0 in (20), then R = 0. Hence, when
a1

22 = 0 the last two equations in (20) yield a1
11 = a1

12 = 0.

Taking into account the inequality (15) and Theorem 3, we obtain the follow-
ing results for stability of the unperturbed motion determined by the system of
perturbed motion (13).

Lemma 4. The stability of the unperturbed motion described by system (13) under
conditions (7) is characterized by one of the following six possible cases:

I. P 6= 0, then the unperturbed motion is unstable;

II. P = 0, QS > 0, then the unperturbed motion is unstable;

III. P = 0, QS < 0, then the unperturbed motion is stable;

IV. R = S = 0, a1
22Q 6= 0, then the unperturbed motion is unstable;

V. P = Q = 0, then the unperturbed motion is stable;

VI. a1
11 = a1

12 = a1
22 = 0, then the unperturbed motion is stable.

In the last two cases the unperturbed motion belongs to some continuous series
of stabilized motions, moreover, it is also asymptotically stable [10] in Case III. The
expressions P,Q,R, S are given in (20).

Later on, we make use of the following expressions of the invariants and comitants
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of system (11) given in (12):

E1 = I2
1K1 − I1(K3 +K4) +K8,

E2 = I3
1 (K2

1 −K7) + 2I2
1 (K1K4 − 2K1K3 −K13) + 2I1(I5K2 + 2K2

3 −K2
4 )+

+4K8(K4 −K3) + 2I2K12, E3 = I2K1 + I1(K4 −K3) −K8,

E4 = I1(K11 −K1K2) +K2(K4 −K3), E5 = K11 − I1K5.

(21)

Lemma 5. Suppose the first equality from (7) holds. Then the system (11) by a
center-affine transformation can be brought to the form

dx1

dt
= 0,

dx2

dt
= a2

αx
α + a2

αβx
αxβ (α, β = 1, 2) (22)

if and only if the following condition

E5 ≡ 0, (23)

holds, where E5 is from (21).

Proof. Suppose the first relation from (7) holds. This allows us to write for (11)

a1
1 = ra2

1, a1
2 = ra2

2. (24)

Denote by ∆ij the minors of matrix of the coefficients from the right-hand sides
of system (11), where i and j represent the number of columns of this matrix on
which the minors are built. Then

E5 = ∆13(x
1)3 + (∆23 + 2∆14)(x

1)2x2 + (∆15 + 2∆24)x
1(x2)2 + ∆25(x

2)3.

By means of this expressions and of conditions (23)–(24) we have

a1
11 = ra2

11, a1
12 = ra2

12, a1
22 = ra2

22. (25)

Taking into account (24) and (25), the center-affine transformation x̄1 = x1 −
rx2, x̄2 = x2 brings the system (11) to the form (15). Lemma 5 is proved.

Theorem 4. Let for differential system of the perturbed motion (11) the invariant
conditions (7) be satisfied. Then the stability of the unperturbed motion in system
(11) is described by one of the following six possible cases:

I. E1 6≡ 0, then the unperturbed motion is unstable;
II. E1 ≡ 0, E2 > 0, then the unperturbed motion is unstable;
III. E1 ≡ 0, E2 < 0, then the unperturbed motion is stable;
IV. E3 ≡ 0, E4E5 6≡ 0, then the unperturbed motion is unstable;
V. E4 ≡ 0, then the unperturbed motion is stable;
VI. E5 ≡ 0, then the unperturbed motion is stable.
In the last two cases the unperturbed motion belongs to some continuous series

of stabilized motions, and moreover, it is also asymptotically stable in Case III. The
expressions Ei (i = 1, 5) are given in (21).
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Proof. Observe that expressions (21), for system (13) under condition (15), are
expressed by (20) as follows:

E1 = Px1, E2 = 4S[Q(x1)2 − Px1x2],

E3 = Rx1 − 2a2
2Sx

2, E4 = −Q(x1)3 + P (x1)2x2.
(26)

Setting E3 ≡ 0, then by means of the polynomials R and S from (20), we get for

E5 from (21) the expression E5 = −a2
2a

1
22(

a2
1

a2
2
x1 + x2)3.

Using the last assertion, the expressions (22) and Lemmas 4 and 5, we get the
Cases I-VI. We mention that the comitant E2 from (21) is even with respect to x1

and x2 and has the weight equal to zero [2] in the Cases II and III. This ensures
that any center-affine transformation cannot change the sign of E2. Theorem 4 is
proved.

Remark 3. From Theorem 4, the conditions for Lyapunov’s Example 2 [1, §32] are
obtained setting a1

1 = a1
2 = 0, a2

1 = k, a2
2 = −1, a1

11 = a, a1
12 = 1

2b, a
1
22 = c,

a2
11 = l, a2

12 = 1
2m, a

2
22 = n and x1 = x, x2 = y.

4 Critical system of Lyapunov type with cubic nonlinearities

Let the differential system of perturbed motion with polynomial nonlinearities
of the form

dx

dt
= cx+ dy + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= ex+ fy + tx3 + 3ux2y + 3vxy2 + wy3

(27)

where c, d, e, f, p, q, r, s, t, u, v, w are arbitrary real coefficients.

Similar to the previous case, when the characteristic equation of (27) has one
zero root and the other one is negative, i.e. the conditions (7) are satisfied, then
system (27) by a center-affine transformation can be brought to its critical form

dx

dt
= px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= ex+ fy + tx3 + 3ux2y + 3vxy2 +wy3.

(28)

According to (10) we write the equation

ex+ fy + tx3 + 3ux2y + 3vxy2 + wy3 = 0. (29)

By (6)–(7) we have for system (28) that I1 = f < 0. Then from the last relation
we express y and obtain

y = −
e

f
x−

t

f
x3 − 3

u

f
x2y − 3

v

f
xy2 −

w

f
y3. (30)
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We seek y as a holomorphic function of x. Then we can write

y = −
e

f
x+B2x

2 +B3x
3 +B4x

4 +B5x
5 +B6x

6 +B7x
7 +B8x

8 +B9x
9 + · · · (31)

Substituting (31) into (30) and identifying the coefficients of the same powers of
x in the obtained relation we have

B2n = 0, ∀n ∈ N, B3 = −
t

f
+ 3

eu

f2
− 3

e2v

f3
+
e3w

f4
,

B5 = −3
(u

f
− 2

ev

f2
+
e2w

f3

)

B3,

B7 = −3
[( v

f
−
ew

f2

)

B3 − 3
(u

f
− 2

ev

f2
+
e2w

f3

)2]

B3,

B9 = −
[w

f
B3

3 + 6
( v

f
−
ew

f2

)

B3B5 + 3
(u

f
− 2

ev

f2
+
e2w

f3

)

B7

]

, . . .

(32)

Substituting (31) into the right-hand side of the critical differential equation (28)
we obtain

px3 + 3qx2y + 3rxy2 + sy3 =

= A2x
2 +A3x

3 +A4x
4 +A5x

5 +A6x
6 +A7x

7 +A8x
8 +A9x

9 +A10x
10 +A11x

11 + · · ·

From this, taking into account (31) and (32) we have

A2n = 0, ∀n ∈ N, A3 = p− 3
eq

f
+ 3

e2r

f2
−
e3s

f3
,

A5 = 3
(

q − 2
er

f
+
e2s

f2

)

B3, A7 = 3
[(

r −
es

f

)

B2
3 +

(

q − 2
er

f
+
e2s

f2

)

B5

]

,

A9 = sB3
3 + 6

(

r −
es

f

)

B3B5 + 3
(

q − 2
er

f
+
e2s

f2

)

B7,

A11 = 3
[

sB2
3B5 + 2

(

r −
es

f

)

B3B7 +
(

r −
es

f

)

B2
5 +

(

q − 2
er

f
+
e2s

f2

)

B9

]

, . . .

(33)

We introduce the following notations:

T = f3p− 3ef2q + 3e2fr − e3s, U = −f3t+ 3ef2u− 3e2fv + e3w,

V = f2q − 2efr + e2s, W = fr − es.
(34)

Then, from (32) and (33), we get

A3 =
1

f3
T, B3 =

1

f4
U, A5 =

3

f2
V B3, A7 = 3(

1

f
WB2

3 +
1

f2
V B5),

A9 = sB3
3 +

6

f
WB3B5 +

3

f2
V B7, . . .

(35)

Using Theorem 3, the expressions (34) and (35) (I1 = f < 0), we come to the
following statement.
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Lemma 6. The stability of unperturbed motion in the system of perturbed motion
(28) is described by one of the following ten possible cases:

I. T < 0, then the unperturbed motion is unstable;

II. T > 0, then the unperturbed motion is stable;

III. T = 0, UV > 0, then the unperturbed motion is unstable;

IV. T = 0, UV < 0, then the unperturbed motion is stable;

V. T = V = 0, U 6= 0, W < 0, then the unperturbed motion is unstable;

VI. T = V = 0, U 6= 0, W > 0, then the unperturbed motion is stable;

VII. T = V = W = 0, sU > 0, then the unperturbed motion is unstable;

VIII. T = V = W = 0, sU < 0, then the unperturbed motion is stable;

IX. T = U = 0, then the unperturbed motion is stable;

X. p = q = r = s = 0, then the unperturbed motion is stable.

In the last two cases, the unperturbed motion belongs to some continuous series
of stabilized motions, moreover, in Cases II, IV, VI and VIII this motion is also
asymptotically stable [10]. The expressions T,U, V,W are given in (34).

Proof. Assume A3 > 0, then from (35) we get T
f3 > 0. Taking into account that

f < 0, it follows T < 0. By Theorem 3 we have proved the Case I. Similarly the
Case II is analyzed.

Suppose in (34) that U 6= 0. Then from (35) we have B3 6= 0.

If A3 = 0, i.e. T = 0, then by (35) the stability or the instability of unperturbed
motion is determined by the sign of expression UV . Then using Theorem 3 we
proved the Cases III and IV.

If T = A5 = 0, i.e. V = 0, then by (35) the stability or the instability of

unperturbed motion is determined according to the sign of expression U2W
f9 . Taking

into account that f < 0, by Theorem 3 we get the Cases V and VI.

If A3 = A5 = A7 = 0 (T = V = W = 0), then the stability or the instability of
unperturbed motion is determined by the sign of expression A9, i.e. sU

f12 . From this,
according to Theorem 3, we obtain the Cases VII and VIII. If T = U = 0, then all
Ak (k ≥ 3) are equal to zero. By Theorem 3 we have the Case IX. If U 6= 0 and
T = V = W = s = 0, then from (34) we obtain the Case X. Lemma 6 is proved.

Proceeding from the polynomial bases of center-affine comitants and invariants
of the system (27) given in [11], we can write the Sibirsky algebras with generators

S1,3 = {J1, J2, . . . , J20,K1,K2, . . . ,K13, Q1, Q2, . . . , Q14}, SI1,3 = {J1, J2, . . . , J20},

where Ji,Kj and Qk are invariants and comitants of these algebras.

For the system (27) we have the notations

x1 = x, a1
1 = c, a1

2 = d, a1
111 = p, a1

112 = q, a1
122 = r, a1

222 = s,

x2 = y, a2
1 = e, a2

2 = f, a2
111 = t, a2

112 = u, a2
122 = v, a2

222 = w.
(36)
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Further we will need the following generators of Sibirsky algebras S1,3 and SI1,3,
which in tensorial form are written

J1 ≡ I1 = aα
α, J2 ≡ I2 = aα

βa
β
α, J3 = aα

πa
β
kαβε

πk, J6 = aα
πa

β
γa

γ
kαβε

πk,

K1 = aα
βx

βxγεαγ , K2 = aα
αβγx

βxγ , K3 = aπ
αβγx

αxβxγxkεπk,

Q1 = aπ
αa

k
βγδx

αxβxγxδεπk, Q2 = aα
βa

β
αγδx

γxδ,

Q3 = aα
γa

β
αβδx

γxδ, Q4 = aα
γa

β
δ a

γ
αβηx

δxη.

(37)

By means of these generators, we compose the following invariant expressions:

F1 = K1(J6 − J1J3) + J1[J
2
1K2 − J1(Q2 +Q3) +Q4], F2 = J6 − J1J3,

F3 = K1[J3K1 − J1(J1K2 + 2Q2 −Q3) +Q4] + J2
1 (J1K3 +Q1),

F4 = J1K2 −Q2, F5 = Q1.

(38)

Lemma 7. Suppose that the first relation from (7) is satisfied. Then the system
(27) by a center-affine transformation can be brought to the form

dx

dt
= 0,

dy

dt
= ex+ fy + tx3 + 3ux2y + 3vxy2 +wy3

if and only if F5 ≡ 0, where F5 is from (38).

The proof is similar to Lemma 6. We make use of F5 which for system (27) has
the form

F5 = ∆13(x
1)4 + (∆23 + 3∆14)(x

1)3x2 + 3(∆15 + ∆24)(x
1)2(x2)2+

+(∆16 + 3∆25)x
1(x2)3 + ∆26(x

2)4,

where ∆ij are the minors of matrix of the coefficients from the right-hand sides of
system (27) built on columns i and j of this matrix.

Theorem 5. Let for differential system of the perturbed motion

dxj

dt
= aj

αx
α + a

j
αβγx

αxβxγ (j, α, β, γ = 1, 2)

the invariant conditions J2
1 − J2 = 0, J1 < 0 be satisfied. Then the stability of the

unperturbed motion is described by one of the following ten possible cases:
I. F1 < 0, then the unperturbed motion is unstable;
II. F1 > 0, then the unperturbed motion is stable;
III. F1 ≡ 0, F2F3 > 0, then the unperturbed motion is unstable;
IV. F1 ≡ 0, F2F3 < 0, then the unperturbed motion is stable;
V. F1 ≡ 0, F2 = 0, F3 6≡ 0, F4 < 0, then the unperturbed motion is unstable;
VI. F1 ≡ 0, F2 = 0, F3 6≡ 0, F4 > 0, then the unperturbed motion is stable;
VII. F1 ≡ 0, F2 = 0, F4 ≡ 0, F3F5 > 0, then the unperturbed motion is unstable;
VIII. F1 ≡ 0, F2 = 0, F4 ≡ 0, F3F5 < 0, then the unperturbed motion is stable;
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IX. F3 ≡ 0, then the unperturbed motion is stable;
X. F5 ≡ 0, then the unperturbed motion is stable.
In the last two cases the unperturbed motion belongs to some continuous series

of stabilized motions, and moreover, it is also asymptotically stable in Cases II, IV,
VI, VIII. The expressions Fi (i = 1, 5) are given in (38).

Proof. Observe that the first three expressions from (38), for critical system (28)
with notations (36), look as follows:

F1 = Tx2, F2 = V, F3 = Ux4 + Tx3y. (39)

Suppose that F1 ≡ 0, F2 = 0. Then by means of the polynomials T, V,W from
(34), we get for expression F4 from (38) that F4 = W ( e

f
x+y)2. Using the expressions

(39), the last assertion together with Lemmas 6 and 7, we obtain the Cases I-X. We
note that the comitants F1, F2F3, F4, F3F5 from (38), used in the Cases I-VIII of
Theorem 5, are even-degree comitants with respect to x and y and have the weights
[2] equal to 0, 0, 0,−2, respectively. Moreover, each one of these comitants (in the
case when it is applied) is a binary form with a well defined sing. This ensures that
any center-affine transformation cannot change their sign. Theorem 5 is proved.

5 Critical system of Lyapunov type with nonlinearities of

degree four

We consider the differential system of perturbed motion with polynomial non-
linearities

dx

dt
= cx+ dy + gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4,

(40)

where c, d, e, f, g, h, k, l,m, n, p, q, r, s are real arbitrary coefficients.
Similar to the previous cases, when the characteristic equation of (40) has one

zero root and the other one is negative, i.e. the conditions (7) are satisfied, then
this system by a center-affine transformation can be brought to its critical form

dx

dt
= gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4.

(41)

According to Theorem 3, we analyze the equation

ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4 = 0. (42)

As for system (40) we have I1 = f < 0, then from (42) we express y:

y = −
e

f
x−

n

f
x4 − 4

p

f
x3y − 6

q

f
x2y2 − 4

r

f
xy3 −

s

f
y4. (43)



INVARIANT CONDITIONS OF STABILITY OF UNPERTURBED MOTION . . . 101

We seek y as a holomorphic function of x. Then we can write

y = −
e

f
x+B2x

2 +B3x
3 +B4x

4 +B5x
5 +B6x

6 +B7x
7 +B8x

8 +B9x
9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 +B16x
16 + · · ·

(44)

Substituting (44) into (43) and equating the coefficients of monomials in x, we
find that

Bi = 0 (i = 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, . . .), B4 = −
(n

f
− 4

ep

f2
+ 6

e2q

f3
− 4

e3r

f4
+
e4s

f5

)

,

B7 = −4
( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B4,

B10 = −2
[

3
( q

f
− 2

er

f2
+
e2s

f3

)

B2
4 + 2

( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B7

]

,

B13 = −4
[( r

f
−
es

f2

)

B3
4 + 3

( q

f
− 2

er

f2
+
e2s

f3

)

B4B7+

+
( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B10

]

,

B16 = −
[ s

f
B4

4 + 12
( r

f
−
es

f2

)

B2
4B7 + 6

( q

f
− 2

er

f2
+
e2s

f3

)(

2B4B10 +B2
7

)

+

+4
( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B13

]

, . . .

(45)
Substituting (44) into the right-hand side of the critical differential equation,

then from (41) we get

gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4 = A2x
2 +A3x

3 + · · · +A16x
16 + · · ·

Hence, taking into account (44) and (45) we have

Ai = 0 (i = 2, 3, 5, 6, 8, 9, , 11, 12, 14, 15, . . .), A4 = g − 4
eh

f
+ 6

e2k

f2
− 4

e3l

f3
+
e4m

f4
,

A7 = 4
(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B4,

A10 = 2
[

3
(

k − 2
el

f
+
e2m

f2

)

B2
4 + 2

(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B7

]

,

A13 = 4
[(

l −
em

f

)

B3
4 + 3

(

k − 2
el

f
+
e2m

f2

)

B4B7+

+
(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B10

]

,

A16 = mB4
4 + 12

(

l −
em

f

)

B2
4B7 + 6

(

k − 2
el

f
+
e2m

f2

)(

2B4B10 +B2
7

)

+

+4
(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B13, . . .

(46)
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Let us introduce the following notation:

A = f4g − 4ef3h+ 6e2f2k − 4e3fl + e4m,

B = −f4n+ 4ef3p− 6e2f2q + 4e3fr − e4s,

C = f3h− 3ef2k + 3e2fl− e3m, D = f2k − 2efl + e2m, E = fl− em.

(47)

Then taking into account (47), we obtain from (45)–(46) that

A4 =
1

f4
A, B4 =

1

f5
B, A7 =

4

f8
BC, A10 = 2

( 3

f12
B2D +

2

f3
CB7

)

,

A13 = 4
( 1

f16
B3E +

3

f2
DB4B7 +

1

f3
CB10

)

,

A16 = mB4
4 +

12

f
EB2

4B7 +
6

f2
D(2B4B10 +B2

7) +
4

f3
CB13, . . .

(48)

Lemma 8. The stability of unperturbed motion in the system of perturbed motion
(41) is described by nine possible cases, if for expressions (47) (I1 = f < 0) the
following conditions are satisfied:

I. A 6= 0, then the unperturbed motion is unstable;
II. A = 0, BC > 0, then the unperturbed motion is unstable;
III. A = 0, BC < 0, then the unperturbed motion is stable;
IV. A = C = 0, BD 6= 0, then the unperturbed motion is unstable;
V. A = C = D = 0, BE > 0, then the unperturbed motion is unstable;
VI. A = C = D = 0, BE < 0, then the unperturbed motion is stable;
VII. A = C = D = E = 0, mB 6= 0, then the unperturbed motion is unstable;
VIII. A = B = 0, then the unperturbed motion is stable;
IX. g = h = k = l = m = 0, then the unperturbed motion is stable.
In the last two cases, the unperturbed motion belongs to some continuous series

of stabilized motions. Moreover, this motion is also asymptotically stable [10] in
Cases III and VI. The expressions A,B,C,D,E are given in (47).

Proof. If A4 6= 0, then from (48) we have A 6= 0. By Theorem 3, we get the Case I.
Suppose in (47) that B 6= 0. Then (48) implies that B4 6= 0. If A4 = 0, i.e.

A = 0, then according to (48) the stability or the instability of unperturbed motion
is determined by the sign of the expression A7 (the sign of the product BC). Using
Theorem 3 we obtain the Cases II and III.

When A = A7 = 0, i.e. C = 0, then from (48) we have A10 = 6
f12B

2D. If D 6= 0,

then we obtain the Case IV (see Theorem 3).
Suppose A = C = D = 0. Then from (48) it results that A13 6= 0, when BE 6= 0.

So the stability or the instability of the unperturbed motion is determined by the
sign of expression BE. Using Theorem 3 we get the Cases V and VI.

When A4 = A7 = A10 = A13 = 0 (B 6= 0), then we have A = C = D = E = 0. If
A16 6= 0, then from (48) we obtain the Case VII. If A = B = 0, then all Ak (k ≥ 4)
vanish. By Theorem 3 we get the Case VIII. If A = C = D = E = 0 and m = 0,
then (47) with f < 0 implies the Case IX. Lemma 8 is proved.
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Let ϕ and ψ be homogeneous comitants of degree ρ1 and ρ2 respectively of the
phase variables x and y of a two-dimensional polynomial differential system. Then
by [3] the transvectant

(ϕ,ψ)(j) =
(ρ1 − j)(ρ2 − j)

ρ1!ρ2!

j
∑

i=0

(−1)j
(

j

i

)

∂jϕ

∂xj−i∂yi

∂jψ

∂xi∂yj−i
(49)

is also a comitant for this system.
In the Iu. Calin’s works, see for example [12], it is shown that by means of the

transvectant (49) all generators of the Sibirsky algebras of comitants and invariants
for any system of type (1) can be constructed.

We denote the homogeneities from the right-hand sides of system (40) as follows:

P1(x, y) = cx+ dy, P4(x, y) = gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

Q1(x, y) = ex+ fy, Q4(x, y) = nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4.
(50)

According to [13], we write the following comitants of the system (40)

Ri = Pi(x, y)y −Qi(x, y)x, Si =
1

i

(∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)

, (i = 1, 4). (51)

Later on, we will need the following comitants and invariants from [13] of system
(40) built by operations (49) and (51):

I1 = S1, I2 = (R1, R1)
(2), K1 = R4, K2 = S4, Q1 = R1, Q2 = S1,

Q3 = (R4, R1)
(2), Q4 = (R4, R1)

(1), Q5 = (S4, S1)
(2), Q6 = (S4, R1)

(1),

Q19 = JR4, R1)
(2), R1)

(2), Q20 = JR4, R1)
(2), R1)

(1),

Q21 = JS4, R1)
(2), R1)

(1), Q43 = JR4, R1)
(2), R1)

(2), R1)
(1),

(52)

where the sign “J” denotes all the parentheses of the transvectant that have to be
written in the left.

We consider for system (40) the following expressions composed of comitants
and invariants from (52) that can be written in the form:

H1 = Q1[Q2(15Q19 − 8Q21) − 10Q43 + 12I2

1Q5] +Q2

2[Q2(4K2Q2 + 5Q3 − 8Q6) − 10Q20],

H2 = 5Q3

2
(K1Q2 − 2Q4) + 2Q2

1
(5Q19 + 4Q21 − 6Q2Q5) − 4Q1Q2[Q2(K2Q2 − 5Q3 − 2Q6)+

+5Q20], H3 = Q2(5Q19 − 6Q21 + 3Q2Q5) − 10Q43, H4 = 5I1Q5 + 10Q19 − 2Q21,

H5 = Q1, H6 = 5I1K2 + 10Q3 − 6Q6, H7 = 8K2Q1 − 5K1Q2 − 10Q4.

(53)

Lemma 9. Suppose that the first equality holds in (7). Then by a center-affine
transformation the system (40) can be brought to the form

dx

dt
= 0,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4

if and only if the condition H7 ≡ 0 is satisfied, where H7 is from (53).
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The proof of this Lemma is similar to Lemma 6. Here, the fact is used that H7

from (53), for the system (40), is of the form

H7 = 10[∆13(x
1)5 + (∆23 + 4∆14)(x

1)4x2 + 2(2∆24 + 3∆15)(x
1)3(x2)2+

+2(2∆16 + 3∆25)(x
1)2(x2)3 + (∆17 + 4∆26)x

1(x2)4 + ∆27(x
2)5],

where ∆ij are the minors of the matrix of coefficients from the right-hand sides of
system (40), built on the columns i and j of this matrix.

Theorem 6. Let for system of perturbed motion (40) the invariant conditions (7)
be satisfied. Then the stability of the unperturbed motion is described by one of the
following nine possible cases:

I. H1 6≡ 0, then the unperturbed motion is unstable;

II. H1 ≡ 0, H2H3 > 0, then the unperturbed motion is unstable;

III. H1 ≡ 0, H2H3 < 0, then the unperturbed motion is stable;

IV. H1 ≡ H3 ≡ 0, H2H4 6≡ 0, then the unperturbed motion is unstable;

V. H1 ≡ H3 ≡ H4 ≡ 0, H2H5H6 > 0, then the unperturbed motion is unstable;

VI. H1 ≡ H3 ≡ H4 ≡ 0, H2H5H6 < 0, then the unperturbed motion is stable;

VII. H1 ≡ H3 ≡ H4 ≡ H6 ≡ 0, H2H7 6≡ 0, then the unperturbed motion is unstable;
VIII. H2 ≡ 0, then the unperturbed motion is stable;

IX. H7 ≡ 0, then the unperturbed motion is stable.

In the last two cases, the unperturbed motion belongs to some continuous se-
ries of stabilized motions, and moreover in Cases III, and VI this motion is also
asymptotically stable [2]. The expressions Hi (i = 1, 7) are given in (53).

Proof. The first three expressions from (53), for the critical system (41), give

H1 = 10Ax3, H2 = 10Bx5 + 10Ax4y, H3 = 10Cx. (54)

Next the proof is based on Lemma 8. The Case I is obvious if we use (54). Put
H1 = 0, then by Lemma 8, from (54) we obtain the Cases II and III.

The product H2H3 is of even degree with respect to x and has the weight equal
to 0 [2]. Therefore, the expression H2H3 under any center-affine transformation does
not change its sign. Using (54), the Case IV of Lemma 8 implies the Case IV of
Theorem 6 and we have (f = I1 < 0)

H2 = 10Bx5, H4 = 10D(
e

f
x+ y). (55)

For the Cases V and VI of the Theorem, Lemma 8 yields A = C = D = 0. Then
from (54) and (55), we obtain the invariant equations for the examined cases. By
means of these equations and the expressions from (53), we obtain

H2 = 10Bx5, H5 = −fx
( e

f
x+ y

)

, H6 = 10E
( e

f
+ y

)3
. (56)
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From this, we get H2H5H6 = −100fBEx6( e
f
x+ y)4. This product is of even degree

with respect to x and y and have the weight −2 and has a well defined sign. Hence,
we have the Cases V-VI.

The Case VII of Theorem 6 is obtained by using the Case VII of Lemma 8 and
the expressions (54)–(56). Indeed, for this case we have

H7 = −10fm
( e

f
x+ y

)4
.

By means of H7 and H2 from (54), we get the Case VII with inequality H2H7.

The Case VIII of the Theorem results from (54) using the Case VIII of Lemma
8 and expressions (47)–(48). The Case IX results from the Case IX of Lemma 8 and
the assertion of Lemma 9. Theorem 6 is proved.
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