
A brief analysis of software tools for logical database design 13

A BRIEF ANALYSIS OF SOFTWARE TOOLS FOR LOGICAL DATABASE

DESIGN

V. Cotelea, PhD, assoc. professor
Academy of Economic Studies of Moldova

Integrated database design for a complex
field of interest and usually large data volume is a
difficult task. The existence of a design
methodology allowed the emergence of assisted
systems to develop software integrated with data
dictionaries. Such tool CASE (Computer Aided
System Engineering) has emerged - systems for
structured database design and related information
systems oriented on data models created in different
DBMS.

Thus, two main directions prevail in
development of CASE in design technologies:
CASE systems for design of the database itself (so-
called Upper-CASE) and integrated tools for
assisting both database design and applications
design that use them.

Often, integration of functions leads to a
strong accretion of CASE system with a DBMS.
For example, the CASE system for mapping the
conceptual model into logical model is often done
for predetermined DBMS.

Another fact is related to integration problem,
which can occur when portable database is designed
on different computers platforms, on different
operating systems, DBMS's and even data models.

Methodologies for developing design tools
and information systems are usually classified
according to areas or features. However, potential
designers are more concerned about situations
where different approaches are appropriate. In paper
[2], five classes of situations are identified: (1) well-
structured problems in cases with well-defined tasks
and clear requirements, (2) structured problems in
cases with clear objectives but uncertain user
requirements, (3) unstructured problems in cases
with unclear objectives, (4) cases where there is a
high user interaction with the system and (5)
complex problems in situations that combine two or
more (1) - (4) classes. A multiview approach must
be taken in developing information systems.

For example, paper [14] proposes a number
of techniques to be used in teaching database
design. The common notations for the entity-
relationship diagram are discussed. It is developed
for this purpose an entity-relationship diagram
notation adapted from UML conceptual modeling
language, which facilitates student learning of the

database design process. The authors present a
specific step by step process for representing entity-
relationship components such as tables and for
normalizing the resulting set of tables.

The design process should be interactive one.
It is good to be a web-based tool. The tool described
in [10], for example, is suitable for relational data
modeling in analysis and design systems, and
training of database designers.

Under the leadership of Gerritsen there have
been implemented several tools to perform various
tasks associated with database design. In [7] an
example to illustrate the capabilities of these
integrating tools is presented. There are also
described future plans regarding integration of tools
for providing database designer a more complete
and consistent service.

Thus, Gerritsen has implemented
DESIGNER tool that automates large scale logical
design of the database and DBD-DSS (Decision
Support Data Base Design System), which assists
the physical design of the database and dynamic
restructuring. In addition, an optimizing constraints
model was developed, which captures many
decisions related to physical design. All proposed
instruments use the terminology, data structures,
access methods and concepts already widespread in
this area.

A program for the normalization of relations
that is written in Prolog has several advantages
relative to programs written in conventional
programming languages, notably, conciseness and
clarity. The program presented in [4] implements
several normalization algorithms and is suitable for
the interactive design of small database applications
and as a teaching aid.

Bitton and other authors [3] propose an
expert tool, named DBE, which produces
knowledge in relational design theory and query
optimization automatically and transparently
available to the database designer. This tool is a
system with an interactive, graphical interface that
uses examples to guide the designer through several
phases of logical and physical database design.
Logical design is based on example relations, and
physical on example queries. The example relations
are automatically generated by the system. They

14 A brief analysis of software tools for logical database design

contain sample data and satisfy the data
dependencies that the designer specifies with the
assistance of the expert tool. The example queries
and their expected frequency are specified by the
designer, using graphically displayed skeleton
queries. The system generates a physical design
scheme that optimizes the mix of queries expected
by the designer, and computes a performance
forecast. Both example relations and example
queries can be modified by the designer, until the
DBE generate a satisfactory design.

Schlimmer [13] has developed a tool that
provides a set of electronic forms for editing the
views and naturally displays dependency
information from the underlying database. This
paper explores the possibility that there may be
multiple keys, some unanticipated by the database
designers. Like the pre-specified key, these
additional keys may be useful for database indexing
or for conversion to a normal form. These keys are
superfluous, however are convenient if a user
wishes to add data to a projection of the database.

By searching for a key that most closely
matches the attributes requested in the projection,
the tool allows the user to edit a view that includes
the minimum number of additional attributes. In the
slowly emerging field of electronic forms, users
may wish to automatically generate a form
corresponding to a projection of a database.
Identification of all keys in a database becomes a
simple task and the obtained information is used in
building normal forms.

New application domains in data processing
environments pose new requirements on the
methodologies, techniques and tools used to design
them. The applications’ semantics should be fully
represented at an increasingly high level, and the
representation should be subject to rigorous
validation and verification. In [15] is presented a
semantic representation framework (including the
language, methods and tools) for design of data-
processing applications. The new features of the
framework include a small number of precisely
defined domain-independent concepts, high-level
possibilities for describing behavioral semantics
(methods and constraints) and the validation and
verification tools included in the framework.

The paper [8] develops a method that maps
an enhanced Entity-Relationship schema into a
relational schema and normalizes the latter into
inclusion normal form. Unlike classical
normalization that characterizes individual relations
only, inclusion normal form takes interrelational
redundancies into account. In [8] is described a
Prolog implementation of the method, developed in

the context of a CASE shell for software
development.

Akehurst and others argued in [1] that the
normalization process can be automated by using a
declarative approach to the specification of the
normalization rules and a precisely defined
transformation over a meta-model of a database
system design language. A tool supporting the
normalization of database system designs can
subsequently be developed providing an invaluable
aid to the software designer.

Douglas and Barker in [6] describe an
intelligent tool for helping to teach the principles of
database design. Presented software uses Prolog
language to implement a training tool with which
the concepts of dependency theory and the
normalization process can be explored. The users
are able to build their own learning environment
and can develop their understanding of the material
at a pace that is individually controlled.

In [9] an automated tool DBLint is described,
it is used for analysis of database designs. DBLint
provides a consistent and easy to maintain database
project by identifying bad design models.

DBLint contains 46 predefined rules which
analyze both metadata and data necessary for
designing database objects. The rules are
configurable and can be adjusted to the specific
needs of the database administrator. In addition, the
system provides a rules interface, so that designer
can create his own rules, this way DBLint can be
customized to the designer requirements.

At the output the system generates a report
containing a detailed description of all found
aspects and a description of the structure of the
analyzed database. In this way the context with
problems can be easily found and understood. The
report also contains a score summarizing the overall
quality of design, based on the shortcomings
discovered rules.

DBLint is available in an online version,
where each can send SQL scripts and get an answer
instantly, or DBLint can also be downloaded onto
one’s own computer.

The paper [12] presents the main features and
functionality of a new version IIS*Case R.6.21
(Integrated Information Systems* Case) developed
in Java environment.

The IIS*Case is a CASE tool, based on the
concept of "form type" and supports conceptual
modeling of a database schema. Moreover, the
system generates subschemes in the third normal
form and performs an automatic integration into a
relational schema. The system provides an
automatic and intelligent support for complex and

A brief analysis of software tools for logical database design 15

highly formalized design and programming tasks.
IIS*Case uses specialized algorithms for testing the
consistency of constraints defined in the database
schema and the subschemes. The system assists
designers to review and validate the results obtained
after each step of the design process.

A very important concept in the relational
model is the concept of dependencies, especially
functional dependencies. It is proven that functional
dependencies can be represented by formulae of
prepositional or predicate calculus. There are
several systems of transforming functional
dependencies into a logic system known in
specialized literature, but all of them have one
serious drawback: they do not have a form that is
appropriate for reasoning about normalization.
Lovrencic and others describe in [11] a new
approach to the process of transforming functional
dependencies into predicate calculus. The system
presented in this paper is designed in the way to be
appropriate for normalization, reasoning about it, as
well as for the building a system for automated
normalization of databases.

In [16] a complete interactive tool, named
JmathNorm, is described, for relational database
normalization using Mathematica. The developed
tool can be used for real-time database design as
well as an aid in teaching fundamental concepts of
database normalization. JMathNorm also supports
interactive use of modules for experimenting the
fundamental set operations such as closure, and full
closure together with modules to obtain the minimal
cover of the functional dependency set and testing
an attribute for a candidate key. JMathNorm’s GUI
interface is written in Java and utilizes
Mathematica’s JLink facility to drive the
Mathematica kernel.

Dhabe and others introduce in paper [5] an
Articulated Entity Relationship diagram, which is
an extension of Entity Relationship diagram to
accommodate the functional dependency
information as its integral part for complete
automation of normalization. The proposed
diagrams are capable of accommodating complete
information about the entities required for
normalization up to Boyce/Codd normal form
including their attributes, relationships and
functional dependencies holds on them.

CONCLUSIONS

The tools for database design developed so
far were focused mainly on the normalization.
There is a complete lack of the systems that would

perform analysis of the existing database design.
This restrains the development of the existing
information systems and their adaptation to new
requirements of today. In addition, the tools are
intended for a more didactic training. The
algorithms used are the classical ones (of high
complexity), which are applicable only on
laboratory examples and may not serve real
database design.

Therefore, more research on the development
of automated design tools is needed, which would
include solutions to problems related to automatic
design. Furthermore, the investigations should be
aimed at developing tools that would adopt the
trends that are currently present in development
systems: a very clear separation of logical and
graphical components, as well as separation of the
component implementing the algorithms and logical
component. They can be developed separately, by
separate teams, in different languages. Today, when
developed systems are complex and the user must
be removed from processes, the declarative
languages can be applied to implement the
algorithms. The tool must be adaptable, easy to
attach new modules and create new contact
interfaces with the designer.

Bibliography

1. Akehurst D.H., Bordbar B., Rodgers P.J.,
Dalgliesh N.T.G. Automatic Normalization via
Metamodelling, Proc. of the ASE 2002 Workshop
on Declarative Meta Programming to Support
Software Development, 2002, 167-172.
2. Avison D. E., Fitzgerald G. Information Systems
Development: Methodologies, Techniques and
Tools, 3rd Ed., Lodon, UK: McGraw Hill, 2002.
608 p.
3. Bitton Dina, Millman Jeffrey C., Torgersen
Solveig. DBE: An expert tool for database design.
Lecture Notes in Computer Science, V.498, 1991,
p.240-263.
4. Ceri S., Gottlob G. Normalization of relations
and PROLOG. Communications of the ACM, V.29,
N.6, 1986, p. 524-544.
5. Dhabe P. S., Patwardhan M. S., Deshpande
Asavari A., Dhore M. L., Barbadekar B.V.,
Abhyankar H. K.. Articulated Entity Relationship
(AER) Diagram for Complete Automation of
Relational Database Normalization. International
Journal of Database Management Systems (IJDMS)
, V.2, N.2, 2010, p.84-100.
6. Douglas Paul, Barker Steve. A Logic
Programming E-Learning Tool For Teaching

16 A brief analysis of software tools for logical database design

Database Dependency Theory. Proc. of the First
International Workshop on Teaching Logic
Programming: TeachLP 2004, Saint Malo,
September 8-9, 2004, p.71-80.
7. Gerritsen Rob. Tools for the automation of
database design. Lecture Notes in Computer
Science, V.132, 1982, p.72-86.
8. Kolp Manuel, Zimanyi Esteban. Enhanced ER to
relational mapping and interrelational
normalization. Information and Software
Technology, V.42, N.15, 2000, p.1057-1073.
9. Krogh Benjamin, Weisberg Andreas, Bested
Morten. DBLint: A Tool for Automated Analysis of
Database Design. 2011, 33 p.,
http://projekter.aau.dk/
projekter/files/43732470/final.pdf (vizited
12.11.2011).
10. Kung H.J., Tung H.L. A Web-based tool to
enhance teaching/learning database normalization.
Proceedings of the Southern Association for
Information Systems Conference, 2006, p. 251-258.
11. Lovrencic A., Cubrilo M., Kisasondi T.
Modeling Functional Dependencies in Databases
using Mathematical Logic. Proc. of the 11th
International Conference on Intelligent Engineering
Systems. INES 2007, June 29-July 2, 2007, p.307-
312.
12. Pavićević Jelena, Luković Ivan, Mogin Pavle,
Ristić Sonja, Resolving Database Constraint
Collisions Using IIS*CASE Tool. Journal of
information and organizational sciences, V.31, N.1,
2007, p.187-206.
13. Schlimmer Jeffrey C. Using Learned
Dependencies to Automatically Construct Sufficient
and Sensible Editing Views. Proc. of the Knowledge
Discovery in Databases Workshop, 1993, p.186-
196.
14. Thompson C. B., Sward K. Modeling and
teaching technique for conceptual and logical
relational database design. Journal of Medical
Systems, V.29, N.5, 2005, p. 513-525.
15. van Keulen M., Skowronek J.,. Apers P. M. G,
Balsters H., Blanken H. M., de By R. A., Flokstra
J. A Framework for Representation, Validation and
Implementation of Database Application Semantics.
Proceeding DS-6 Proc. of the Sixth IFIP TC-2
Working Conference on Data Semantics: Database
Applications Semantics, Stone Mountain, Atlanta,
Georgia, USA, May 30 - June 2, 1995, p.526-546.
16. Yazici Ali, Karakaya Ziya. JMathNorm: A
Database Normalization Tool Using Mathematica.
Lecture Notes in Computer Science, V.4488, 2007,
p.186-193.

 Recommended for publication: 17.08.2011

