
Proceedings of the International Workshop on Intelligent Information Systems

IIS’2011, September 13-14, 2011, Chisinau, Republic of Moldova

© 2011 by Victor Beșliu, Dumitru Ciorbă, Sergiu Ciumac, Vadim Andronachi

Concurrency Anatomy of Intelligent Information

System Based on Agents

Victor Besliu, Dumitru Ciorba,

Sergiu Ciumac, Vadim Andronachi

Abstract: Currently, modern applications cannot be imagined without

intelligent entities, which imply high performance requirements. This can

be achieved using concurrent techniques. Even though, all parallel

activities present within a system, increase its behavioral complexity.

That’s why there is a strong need in adequate architecting that can

significantly decrease implementation errors. Additionally, in this paper

we would like to present an increasingly popular concurrency

methodology that is used alongside with AI specific solutions: agent

programming model.

Keywords: intelligent information system, concurrency-intensive

architecture, actor model, agent programming model.

1 Intelligent Information Systems (IIS)

Main driving forces of a modern society evolution to one based upon

knowledge, are the scientific-technical progress and information viewed

as a production factor. J. A. O’Brien [1] presents today's society as being

in a transition period covered by three technology waves, the latest stage

being the global information society. In the perspective of the classic

relationship "data-information-knowledge" authors of [1] suggest that the

next stage will be the stage of knowledge. This stage will be characterized

by intelligent information systems, focused on the information

exploration, to achieve a desirable level of intelligence by some system

entity.

Benefits of modern multiprocessor systems can be exploited to meet

performance requirements only by naturally representation of concurrent

activities. An adequate example may be agent-based systems, which are

inherently concurrent. It should be noted then, that the concurrency is

considered as a critical property of such systems, and that it must be

considered in the early development stages – architecting stages.

2 Concurrency-intensive architecture

Victor Besliu, et al.

116

According to IBM Rational Unified Process™ architecture is defined

during the inception and elaboration phases [2]. This popular software

development process is architecture centric. It means that the system’s

architecture is a primary artifact for system’s development [3]. Thus the

importance of an accurate architecting must be sustained by a distinct

process. In this context a generic framework is proposed below. It will

permit us analyzing concurrency-intensive architecture [4] from the

perspective of evolution (see Fig. 1). Each phase defines an architecture

model, which may also include a number of views, where each view is

related to a particular domain of the phase.

Figure 1. Concurrency-intensive software architecture evolution

Conceptual architecture defines entities, their relationships, over

which are defined rules to synchronize, select and accept operations, and

these rules define control constrains used at the next Logical architecture

phase. Logical architecture conforms to the principles and rules of the

conceptual architecture. This phase involves a variety of structures, which

have the nature of mathematical formalisms, determining the logics of

specification, which helps describing and reasoning about behavior of

concurrent architecture. Executable architecture is a result “product” of

the last phase. This term may express the description of system’s

architecture in a formal notation, the semantic of which is being

determined by the logic phase, or may signify a partial implementation of

the system – a prototype.

3 Anatomy of IIS in the scope of concurrency

Anatomy of IIS can be analyzed in the perspective of concurrency

conceptual views of described architecting framework. The Structure view

can show configurations in terms of components, which are units of

Concurrency Anatomy of Intelligent Information System Based on Agents

117

runtime computation or data-storage, and connectors, which in their turn

are the interaction mechanisms between components [5].

The next three views have been inspired by a survey of concurrency

issues presented in [6]. The survey is organized from the taxonomy of

features of concurrent object-oriented languages. However the

generalization of the described models, allows us to use them in our

architecting process as views. Animation view shows the relationship

between objects and active entities (process/thread/task). The treatment of

threads and objects as independent or dependent concepts, defines two

alternatives of activity organization: unrelated and related models. The

interaction view depicts interactions between objects initiated by the

client’s invocation, which may be either synchronous or asynchronous.

Concepts, related to Synchronization view, specify concurrent invocation

management.

4 Actor model as concurrent model of agent-based IIS

Popular agent-based systems require a platform, which can define data

pipelines or networks. Data pipeline is a formal approach, according to

which primary goal is achieved by dividing processing specific tasks

between agents (components, presented in structure view) [3].

The Actor model can provide an adequate interaction infrastructure

which meets all requirements: an actor can implement an independent

orthogonal functionality (related model, presented in animation view);

communication model is asynchronous (presented in interaction view) and

is based on dataflow instead of control flow (communication is done by

transferring messages), etc. [7]. As the result, the agent programming

model has several advantages: scalability; extensibility; implicit

parallelism; asynchronous model, easy isolation of access to shared

resources; etc.

Now, there are many modern actor/agent based libraries, frameworks

and languages, which permit agent-style programming. Among these

languages are: Erlang (Ericsson), Scala (Martin Odersky, EPFL), F#

(.Net/Microsoft), Haskell, etc.

5 Conclusion
As concurrent systems become more complex there is a strong need in

defining new methodologies which will solve specific data flow problems.

Concurrent agent approach gives the researchers the advantage of

Victor Besliu, et al.

118

focusing on the problem that needs to be solved rather than how these

specific issues are tackled. Applications which exhibit a complex

internal/external data flow can be successfully parallelized using the

approaches described in this paper. As any methodology it doesn’t

represent a panacea to all AI specific problems, as control flow solutions

are still subject of an area of classical concurrency.

References

[1] M. Vlada and Al. Tugui. Information Society Technologies - The four waves

of information technologies. The 1st International Conference on Virtual

Learning (ICVL). 2006.

http://fmi.unibuc.ro/cniv/2006/disc/icvl/documente/pdf/met/1_vlada.pdf.

[2] IBM Rational Software. Rational Unified Process. Best Practices for

Software Development Teams. IBM developerWorks®. [Online] July 23,

2005. [Cited: May 11, 2011.]

http://www.ibm.com/developerworks/rational/library/content/03July/1000/12

51/1251_bestpractices_TP026B.pdf.

[3] H. Yim, et al. Architecture-Centric Object-Oriented Design Method for

Multi-Agent Systems. Fourth International Conference on Multi-Agent

Systems (ICMAS'00). Los Alamitos, CA, USA : IEEE Computer Society,

2000. ISBN: 0-7695-0625-9.

[4] D. Ciorba and V. Besliu. Architecting software concurrency. Computer

Science Journal of Moldova. 2011, Vol. 19, 1 (55).

[5] P. Clements. Documenting software architectures: views and beyond. s.l. :

Addison-Wesley, 2003. ISBN 0-201-70372-6.

[6] D.G. Kafura and G. Lavender. Concurrent Object-Oriented Languages and

the Inheritance. [ed.] T.L. Cassavant. Parallel Computers: Theory and

Practice. s.l. : IEEE Press, 1994. pg. 165-198.

[7] G. Agha, and P. Thati. An Algebraic Theory of Actors and Its Application to

a Simple Object-Based Language. Formal Methods and Declarative

Languages Laboratory. [Online] 2004. [Cited: 26 November 2010.]

http://formal.cs.uiuc.edu/papers/ATactors_festschrift.pdf. LNCS 2635.

Victor Beșliu
1
, Dumitru Ciorbă

2
, Sergiu Ciumac

3
, Vadim Andronachi

4

Technical University of Moldova
1
E-mail: besliu@mail.utm.md

2
E-mail: dumitru.ciorba@ati.utm.md

3
E-mail: ciumac.sergiu@gmail.com;

4
E-mail: andronachi.vadim@gmail.com

